Как устроен прибор
Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:
- Инвертирующие.
- Повышающие.
- Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
- Ключевой коммутирующий элемент.
- Источник питания.
- Индуктивный накопитель энергии (дроссель, катушка индуктивности).
- Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
- Блокировочный диод.
Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.
Схема простого инвертора напряжения.
Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.
Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.
Таблица – Основные характеристики преобразователя напряжения.
Материал по теме: Что называют триггером в электронике.
Назначение устройства
Устройство, которое преобразует напряжение, также называют инвертором.
Инвертор — это электронный прибор служащий для трансформации подаваемого на его вход постоянного напряжения в электрический сигнал, изменяющийся по времени с другой величиной амплитуды. То есть если на вход прибора подать постоянный сигнал равный 12 вольт, то на его выходе можно будет получить переменное напряжение 220 вольт.
Принцип работы устройства основан на преобразовании электрической энергии. Существуют приборы как заводского изготовления, так и самодельные, но принцип их работы одинаков. Разница лишь в качестве — надёжности и правильности формы выходного сигнала.
Схемотехника устройств построена на использовании высокочастотных трансформаторов, специализированных микросхем и транзисторов. По виду исполнения схемы инверторы бывают:
- Мостовые — в принципиальной схеме такого типа преобразователей не используются трансформаторы. Обычно так изготавливаются устройства с мощностью до 100 ВА.
- Трансформаторные — ключевую роль в схеме играет трансформатор, имеющий нулевой вывод. Такая схема несложна, но обычно предназначена для питания устройств, мощность которых не превышает 500 ВА.
- Комбинированные — в их схемотехнике используются транзисторы и трансформаторы. Такой подход позволяет создавать преобразователи с широким диапазоном мощностей.
Что какое преобразователь напряжения
Преобразователь – это электротехническое устройство, преобразующее электроэнергию одних параметров или показателей качества в электроэнергию с другими значениями параметров или показателей качества. Параметрами электрической энергии могут являться род тока и напряжения, их частота, число фаз, фаза напряжения. По степени управляемости преобразователи электрической энергии подразделяются на неуправляемые и управляемые. В управляемых преобразователях выходные переменные: напряжение, ток, частота — могут регулироваться.
По элементной базе преобразователи электроэнергии подразделяются на электромашинные (вращающиеся) и полупроводниковые (статические). Электромашинные преобразователи реализуются на основе применения электрических машин и в настоящее время находят относительно редкое применение в электроприводах. Полупроводниковые преобразователи могут быть диодными, тиристорными и транзисторными.
По характеру преобразования электроэнергии силовые преобразователи подразделяются на выпрямители, инверторы, преобразователи частоты, регуляторы напряжения переменного и постоянного тока, преобразователи числа фаз напряжения переменного тока.
В современных автоматизированных электроприводах применяются главным образом полупроводниковые тиристорные и транзисторные преобразователи постоянного и переменного тока. Достоинствами полупроводниковых преобразователей являются широкие функциональные возможности управления процессом преобразования электроэнергии, высокие быстродействие и КПД, большие сроки службы, удобство и простота обслуживания при эксплуатации, широкие возможности по реализации защит, сигнализации, диагностирования и тестирования как самого электрического привода, так и технологического оборудования.
Принцип работы преобразователя напряжения.
Вместе с тем, для полупроводниковых преобразователей характерны и определенные недостатки. К ним относятся: высокая чувствительность полупроводниковых приборов к перегрузкам по току, напряжению и скорости их изменения, низкая помехозащищенность, искажение синусоидальной формы тока и напряжения сети.
Как обозначаются конденсаторы на схеме.
Читать далее
Как отличается параллельное и последовательное соединение резисторов.
Читать далее
Масляные трансформаторы – что это такое, устройство и принцип работы.
Читать далее
Примечания
- ГОСТ Р 50369-92 Электроприводы. Термины и определения
- С. Ю. Забродин.
Глава 5 Маломощные выпрямители постоянного тока, §5.1 Общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 287. — 496 с.
- С. Ю. Забродин.
Глава 6 Ведомые сетью преобразователи средней и большой мощности, §6.1 общие сведения // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 315. — 496 с.
- С. Ю. Забродин.
Глава 8 Автономные инверторы, §8.1 Автономные инверторы и их классификация // Промышленная электроника: учебник для вузов. — М.: Высшая школа, 1982. — С. 438. — 496 с.
Это заготовка статьи об электричестве. Вы можете помочь проекту, дополнив её. |
Особенности применения
На данный момент подобное оборудование используется практически во всех отраслях промышленности и с каждым днем находит все большее применение в жизни каждого человека, в частности в составе оборудования легковых или грузовых автомобилей. Рабочая частота инверторов напряжения (преобразователей напряжения) не превышает ста килогерц. Плюс ко всему, преобразователь напряжения (инвертор напряжения) может использоваться как генератор. В принципе, генератор и инвертор достаточно схожи, однако не стоит считать, что данные виды оборудования одинаковы по назначению и по принципу действия.
Повышающий преобразователь.
В схемах генератора и преобразователя напряжения имеются существенные отличия. Кроме того, по сравнению с дизельным или бензиновым генератором инвертор напряжения (преобразователь напряжения) имеет целый ряд преимуществ, в частности:
- инвертор напряжения (преобразователь напряжения) имеет значительно меньшие габариты и вес;
- у инвертора напряжения (преобразователя напряжения) отсутствует необходимость постоянного контроля целого перечня параметров, обязательного при эксплуатации дизельных электростанций или бензиновых генераторов. Среди этих параметров уровень топлива, уровень и давление масла двигателя, температура и уровень охлаждающей жидкости. Все эти параметры, например, при работе инвертора напряжения (преобразователя напряжения) от автомобильного двигателя контролируются независимо, кроме того, при относительно маломощных потребителях (скажем, до 1000 Вт) длительное время включение автомобильного генератора вообще не требуется и, естественно, топливо не расходуется;
- на холостом ходу инвертор напряжения (преобразователь напряжения) имеет просто мизерное потребление энергии (около 5 Вт), в отличие от дизельного или бензинового генератора, расходующих на холостом ходу до пятидесяти процентов от расхода при максимальной нагрузке;
- отсутствие механического износа, соответственно, лучшая отказоустойчивость и больший ресурс работы;
- колебание выходной частоты у инвертора напряжения (преобразователя напряжения) минимально и, как правило, не превышает сотых долей процента;
- инвертор напряжения (преобразователь напряжения) экологичен (не шумит и не выделяет выхлопных газов) и позволяет подключать альтернативные источники энергии (например, и солнечные батареи или ветряные генераторы);
- инвертор напряжения (преобразователь напряжения) может использоваться как пуско-зарядное устройство, как источник бесперебойного питания, как восстановитель аккумуляторов;
- ну и, наконец, инвертор напряжения (преобразователь напряжения) просто существенно (до нескольких раз!) дешевле.
Таблица – Популярные модели преобразователей напряжения.
Перечень потенциальных пользователей инверторов напряжения (преобразователей напряжения) может быть очень широк. Здесь и производители разнообразных работ в удаленных условиях или при частых отключениях электричества, и любители отдыха на природе, желающие сохранить возможность пользования «благами цивилизации», и предусмотрительные собственники различных производств или охраняемых объектов и т.д. и т.п.
Материал по теме: Принципы работы мультиметра и особенности выбора.
В частности, очень большие плюсы дает использование инверторов напряжения (преобразователей напряжения) совместно с разными автономными источниками электропитания, одна экономия топлива чего стоит, а к нему еще и хранимый «запас электричества», так сказать, на всякий случай.
Будет интересно➡ Как выбрать цифро-аналоговый преобразователь (ЦАП)
Правда, при выборе инверторов напряжения (преобразователей напряжения) необходимо помнить, что многие потребители электротока (особенно, холодильники и насосы) имеют пусковую мощность в несколько раз больше номинальной (обычно, можно посмотреть в паспорте устройства) и именно ее стоит брать за основу при расчете требуемого инвертора напряжения (преобразователя напряжения).
Преобразователь 24В в 12В
Самые распространённые схемы
Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.
Понижающий преобразователь напряжения и его схема
Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.
Повышающий преобразователь и схема
Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.
Инвертирующая схема
Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.
Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.
Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.
В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.
Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.
Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.
Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.
Типы преобразователей
При выборе модели преобразователя надо также учитывать особенности потребления электроэнергии различными приборами с учетом особенностей потребления электроприборы можно условно разделить на 2 группы.
Первая группа – это электроприборы, при включении и в начале работы которых кратковременная мощность потребления (так называемая пиковая стартовая нагрузка) в несколько раз превышает номинальную мощность. К этой группе относятся, например насосы, компрессоры и холодильники, для их подключения, зачастую приходиться использовать развязывающие трансформаторы.
Комментарий эксперта
Лагутин Виталий Сергеевич
Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.
Задать вопрос
Реальная мощность некоторых приборов, например, насосов на основе двигателей асинхронного типа и оборудования на их основе (кондиционеров, холодильников), примерно в 1,5 раза больше номинальной, это связано с тем, что обычно указывается мощность без учета потерь (полезная мощность). Для приборов этой группы необходимо выбирать преобразователь напряжения с максимально допустимой мощностью, значительно превышающую номинальную мощность прибора.
Вторая группа – это электроприборы, стартовая мощность которых не превосходит номинальную, к ним относятся, потребляющие постоянную мощность телевизоры, компьютеры, лампы, нагреватели, а так же инструмент с двигателями коллекторного типа (дрели, отрезные машинки, рубанки, бетономешалки, газонокосилки и т.д.), которые потребляют номинальную мощность только в момент прикладывания нагрузки, для приборов этой группы достаточно выбирать преобразователь напряжения с максимально допустимой мощностью, немного превышающую номинальную мощность прибора.
Электронный преобразователь напряжения.
Импульсные устройства
Импульсные преобразователи применяются в тех случаях, когда нужно преобразовать один уровень напряжения в другой. Чаще всего они собираются на базе индуктивных или емкостных накопителей энергии. От других источников электропитания их отличает высокий уровень КПД, достигающий в некоторых случаях 95%. Принципиальные электрические схемы импульсных преобразователей выполняются с использованием 4 х элементов:
- коммутирующий элемент;
- накопитель энергии (катушка индуктивности, дроссель, конденсаторы);
- блокирующий диод;
- конденсатор, соединенный параллельно с сопротивлением нагрузки.
Комбинации перечисленных компонентов могут образовывать любой тип импульсного конвертора. Величина напряжения на выходе определяется шириной импульсов, управляющих коммутирующим элементом. При этом создается запас энергии в катушке индуктивности. Стабилизация реализуется за счет обратной связи, то есть ширина импульсов меняется в зависимости от значения выходного напряжения.
Импульсный преобразователь напряжения.
Для создания токов высокой частоты используют преобразователи, собранные с использованием колебательных контуров. При этом напряжение постоянного тока, поступающее на генератор переменного напряжения (мультивибратор, триггер) является одновременно и питающим. Выходные импульсы имеют, как правило, прямоугольную форму. Полученное переменное напряжение можно усилить, понизить и т. д.
Кроме того его легко выпрямить и получить нужную полярность. Для этого используют соответствующее включение диодов, а выпрямитель собирают, например, по мостовой схеме. Напряжение на выходе импульсных преобразователей необходимо стабилизировать. Для этого используют различного рода стабилизаторы (импульсные или линейные). Правда, из-за низкого КПД последние используются редко.
Что касается импульсных стабилизаторов, то они в своей работе используют широтно или частотно импульсную модуляцию. В первом случае меняется длительность во втором — частота импульсов. Встречаются устройства с комбинированным способом стабилизации.
Автомобильные модели
С увеличением количества автомобилей возросла потребность использования в процессе их эксплуатации различных бытовых приборов, в том числе работающих от переменного напряжения 220В. Для этого и были разработаны автомобильные инверторы, с помощью которых постоянное напряжение от автомобильного аккумулятора +12 В (легковые автомобили) или +24 В (грузовой автотранспорт) преобразуется в переменное 220 В. К ним можно подключить электробритву или электродрель, зарядить ноутбук и пр.
Автомобильный инвертор является генератором напряжения, форма которого приближена к синусоиде. При этом ток на выходе прибора не зависит от величины тока на входе и его можно регулировать практически от нуля до максимума. Точно также теоретически можно регулировать частоту и напряжение. Упрощенно электрическую схему автомобильного конвертора можно представить в виде трансформатора, на первичные обмотки которого напряжение подается через тиристорные ключи. Поочередно включая обмотки тиристоры создают на выходе трансформатора переменный ток.
Автомобильные преобразователи напряжения
При этом формируется модифицированная (ступенчатая) синусоида, но это никак не влияет на работоспособность большинства бытовых приборов. Преобразователи для использования в автомобилях обладают достаточно высоким КПД, который достигает 90%, что свидетельствует о достаточно высоком качестве получаемой синусоиды. Потребитель в процессе эксплуатации прибора имеет возможность выбрать один из трех режимов его работы:
- Рабочий режим, обеспечивающий длительную работу инвертора с номинальной мощностью.
- Режим перегрузки, который позволяет получить от прибора значительно большую мощность, чем при работе в обычном режиме. Однако в таком режиме инвертор не должен работать более 30 мин.
- Пусковой режим используется при необходимости получения моментальной мощности при высокой нагрузке (запуск электродвигателя и пр.).
Будет интересно➡ Зачем нужен преобразователь частоты
Эксплуатируя инвертор, не рекомендуется постоянно включать его на максимальную мощность. Выбирать режим его работы необходимо, исходя из величины нагрузки. Выбирая конвертор для авто основное внимание необходимо обратить на его мощность. Ее величина должна быть заведомо больше мощности подключаемых устройств. Кроме того немаловажное значение имеет и тип подключаемых электроприборов. Если к автомобильному инвертору предполагается подключать приборы, потребляющие при запуске значительные токи, то приобретать нужно прибор, обладающий соответствующей мощностью (от 300 до 2000 Вт).
Бытовые приборы
В настоящее время широкое применение преобразователи напряжения нашли в быту. Их стали использовать в домашних условиях в качестве резервных или аварийных источников питания, задача которых обеспечить работу бытовой техники в случае несанкционированного отключения сети централизованного электропитания. Как правило, преобразователь напряжения для дома представляет собой комбинацию инвертора с одной или несколькими аккумуляторными батареями. В коттеджах и загородных домах (дачах) их дополняют также устройствами, способными заряжать аккумуляторы.
Схема бытового преобразователя напряжения.
В отдельных случаях для этого могут использоваться солнечные батареи или ветрогенераторы. К инверторам, предназначенным для использования в домашних условиях, чаще всего подключают маломощную бытовую технику:
- телевизоры;
- компьютеры и пр.
При этом необходимо помнить об электроприборах, например, холодильниках, электронасосах и др., которым для работы необходима подача электропитания с «чистой синусоидой», что требует приобретения значительно более дорогих устройств. В местах, где отсутствует централизованная электросеть можно, рассчитав необходимую электрическую мощность, организовать систему электропитания целого дома. Однако это потребует приобретения достаточно дорогого оборудования.
Бытовой инвертор напряжения.
Например, стоимость инвертора мощностью 10…60 кВт составляет не менее $20000. Использование подобного рода устройств целесообразно в случае организации систем электропитания на основе альтернативных источников энергии. Если сравнивать классический блок бесперебойного питания (UPS), работающий в режиме online, с преобразованием напряжения, то сочетание компонентов «аккумуляторная батарея+инвертор» выглядит предпочтительней по ряду причин, среди которых:
- щадящий режим работы аккумуляторов;
- большой выбор аккумуляторных батарей;
- возможность параллельного подключения нескольких преобразователей и пр.
На отечественном рынке электрооборудования импульсные преобразователи представлены в достаточно широком ассортименте. Продукция этих производителей отличается высоким качеством и обладает большим количеством различных функций. Так преобразователи типа DC/AC обеспечивают защиту рот глубокого разряда аккумуляторных батарей, контролируя величину минимального входного напряжения. Контролируют они и параметры выходного сигнала.
Дополнительный материал по теме: Как проверить АКБ с помощью одного мультиметра.
Бестрансформаторные устройства
Особенности преобразователя напряжения с 12 В в 220 В. В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя.
Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор. Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.
Бестрансформаторные преобразователи напряжения.
Принцип построения инверторов [ править | править код ]
Преобразование постоянного напряжения первичного источника в переменное достигается с помощью группы ключей, периодически коммутируемых таким образом, чтобы получить знакопеременное напряжение на зажимах нагрузки и обеспечить контролируемый режим циркуляции в цепи реактивной энергии. В таких режимах гарантируется пропорциональность выходного напряжения. В зависимости от конструктивного исполнения модуля переключения (модуля силовых ключей инвертора) и алгоритма формирования управляющих воздействий, таким фактором могут быть относительная длительность импульсов управления ключами или фазовый сдвиг сигналов управления противофазных групп ключей. В случае неконтролируемых режимов циркуляции реактивной энергии реакция потребителя с реактивными составляющими нагрузки влияет на форму напряжения и его выходную величину .
Инверторы напряжения со ступенчатой формой кривой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования формируются однополярные ступенчатые кривые напряжения, приближающиеся по форме к однополярной синусоидальной кривой с периодом, равным половине периода изменения выходного напряжения инвертора. Затем с помощью, как правило, мостового инвертора однополярные ступенчатые кривые напряжения преобразуются в разнополярную кривую выходного напряжения инвертора.
Инверторы с синусоидальной формой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования получают напряжение постоянного тока, значение которого близко к амплитудному значению синусоидального выходного напряжения инвертора. Затем это напряжение постоянного тока с помощью, как правило, мостового инвертора преобразуется в переменное напряжение по форме, близкое к синусоидальному, за счет применении соответствующих принципов управления транзисторами этого мостового инвертора (принципы так называемой «многократной широтно-импульсной модуляции»). Идея этой «многократной» ШИМ заключается в том, что на интервале каждого полупериода выходного напряжения инвертора соответствующая пара транзисторов мостового инвертора коммутируется на высокой частоте (многократно) при широтно-импульсном управлении. Причём длительность этих высокочастотных импульсов коммутации изменяется по синусоидальному закону . Затем с помощью высокочастотного фильтра нижних частот выделяется синусоидальная составляющая выходного напряжения инвертора. . При использовании однополярного источника постоянного напряжения (доступны уровни 0 и Ud, где Ud — напряжение постоянного тока, питающего инвертор) эффективное значение первой гармоники фазного напряжения U e f f ( 1 ) = 0.45 U d < m >^<(1)>=0.45U_< m >>При использовании двуполярного источника постоянного напряжения (доступны уровни 0, -Ud/2 и Ud/2) амплитудное значение первой гармоники фазного напряжения U m ( 1 ) = 0.5 U d < m >^<(1)>=0.5U_>соответственно, эффективное значение U e f f ( 1 ) = 0.35 U d < m>^<(1)>=0.35U_< m >>
Инверторы напряжения с самовозбуждением
Инверторы с самовозбуждением (автогенераторы) относятся к числу простейших устройств преобразования энергии постоянного тока. Относительная простота технических решений при достаточно высокой энергетической эффективности привело к их широкому применению в маломощных источниках питания в системах промышленной автоматики и генерировании сигналов прямоугольной формы, особенно в тех приложениях, где отсутствует необходимость в управлении процессом передачи энергии. В этих инверторах используется положительная обратная связь, обеспечивающая их работу в режиме устойчивых автоколебаний, а переключение транзисторов осуществляется за счет насыщения материала магнитопровода трансформатора. В связи со способом переключения транзисторов, с помощью насыщения материала магнитопровода трансформатора, выделяют недостаток схем инверторов, а именно низкий КПД, что объясняется большими потерями в транзисторах. Поэтому такие инверторы применяются при частотах f не более 10 кГц и выходной мощности до 10 Вт. При существенных перегрузках и коротких замыканиях в нагрузке в любом из инверторов с самовозбуждением происходит срыв автоколебаний (все транзисторы переходят в закрытое состояние).
Принцип действия
Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия. Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
- Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
- Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
- В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
- Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
- Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
- В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
Принципиальная схема Бестрансформаторного преобразователя напряжения.
Полезные свойства аппаратов
Часто инверторы из 12 В в 220 В обеспечивают предохранение или ослабление функционирования информационных систем от качества сетей переменного тока. Если внезапно произойдет отключение электроэнергии, то с помощью запасной батареи и выпрямителя восстановится резервное питание и можно прекратить работу компьютера без потери необходимых данных.
В сложных и ответственных конструкциях эти устройства функционируют в более длительном и контролируемом режиме. Работа эта осуществляется как отдельно, так и параллельно с основной электрической сетью. Кроме того, инвертор может работать в качестве промежуточного звена в комплексе преобразователей.
Отличительной чертой в этом случае считается наличие высокой частоты напряжения — до 100 кГц. Для эффективной работы дополнительно используются полупроводниковые ключи, магнитные материалы и специальные контроллеры. Чтобы быть удобным для применения, инвертор должен обладать высоким коэффициентом полезного действия, надежностью и иметь компактные габаритные характеристики.
Ремонт прибора
Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно.
Будет интересно➡ Зачем нужен преобразователь частоты
Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.
Критерии выбора
Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:
- Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
- Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
- Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
- Минимальные габариты и вес;
- Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.
Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.
Простой самодельный инвертор напряжения 12-220В на двух транзисторах
В качестве трансформатора использовал ферритовые чашки с такимим размерами: диаметр – 35 мм, высота – 20мм. Сперва мотается первичная обмотка, она содержит 14 витков провода диаметром 0,5 мм, после намотки ее нужно обернуть изолентой в один слой. Вторичная обмотка трансформатора мотается проводом диаметром 0.2мм и содержит 220 витков, поверх ее также обматываем изолентой в один слой. Все, трансформатор готов, осталось только собрать половинки и посадить на болтик.
Методом проб и ошибок подобрал для схемы транзисторы, ориентируясь на минимальный ток потребления схемы. Получилась пара КТ814 и КТ940, затем были подобраны сопротивления и емкость. В результате моих опытов получилась вот такая схема с указанными номиналами, она приведена выше. Данная конструкция простого инвертора напряжения отлично подходит для питания энергосберегающей лампы мощностью в 8,9,11 Ватт. Лампы мощностью в 20 ватт не хотят работать, скорее всего вторичка слабовата – переделывать я не стал. Лампа мощностью в 9 ватт светит так же ярко как и при питании напрямую от сети переменного тока 220В. Потребляемый ток схемы преобразователя напряжения колеблется в пределах 0.5 – 0.54 Ампера.
Интересно почитать: Как легко проверить блок питания компьютера на неисправности.
Если использовать вместо транзистора КТ940 транзистор КТ817 и аналогичные то ток, потребляемый схемой инвертора напряжения и лампой, возрастает до величины 0,86 Ампера. Данная конструкция простого инвертора напряжения доступна к изготовлению всем радиолюбителям и начинающим. Преимущества данной конструкции очевидны: простота изготовления и надежность в работе.
Нужно отметить что очень много радиолюбителей проживает в сельской местности и не имеют возможности приобрести импортные детали, к тому же хоть и недорого но стоят денег те же полевые транзисторы, которые при ошибке тут же могут сгореть или выйти из строя, не говоря уже о микросхемах. А чаще всего у радиолюбителя запасы радиодеталей ограничены. Вот так и появился простой инвертор напряжения, собранный из деталей, полученых из советского хлама. Имея в распоряжении аккумулятор емкостью в 7 Ампер-Часов нетрудно подсчитать на сколько времени его хватит – проверял лично.
Самодельный преобразователь напряжения.
Часто задаваемые вопросы
Как рекомендуемый ток заряда до 0,3C влияет на пластины батарей?
У обычной свинцово-кислотной батареи при токах заряда 0,25-0,3С будет происходить ускоренная реакция выделения водорода, что приведет к высыханию и набуханию батареи. У батарей серии Carbon в следствие емкостного эффекта и увеличения числа пластин, большие токи будут равномерно распределены по пластинам, что предотвратит негативные реакции по расщеплению воды в составе электролита.
Почему не работает преобразователь напряжения?
Неисправность преобразователя напряжения часто возникает из-за использования не подходящих проводов (например, алюминиевых вместо медных). Многие модели инверторов чувствительны к питания. Они рассчитаны на работу только от аккумуляторных батарей или стабилизированных источников электропитания. Такие устройства нельзя подключать к солнечным панелям или бензогенераторам.
Какие трудности могут возникнуть при ремонте преобразователя напряжения?
Основная сложность заключается в выборе аналогов транзисторов и трансформаторов при отсутствии оригинальных компонентов. Остальные элементы электросхемы — например, резисторы, конденсаторы или диоды — не имеют конструктивных особенностей, поэтому можно использовать любые доступные детали, подходящие по напряжению, мощности и номиналу.
Пассивное ограничение без рассеяния
Это довольно интересная конфигурация (см. рис. 7), в которой используются элементы вышеописанных топологий: размагничивающая обмотка, снабберная цепь и активное ограничение. В этой схеме конденсатор аккумулирует энергию индуктивности рассеяния между первичной обмоткой и обмоткой размагничивания и управляет скоростью нарастания напряжения на силовом ключе при его запирании, уменьшая тем самым коммутационные потери.
Рис. 7. Пассивное ограничение без рассеяния
При открытом силовом ключе ограничивающий конденсатор разряжается через размагничивающую обмотку и отдает энергию входному конденсатору. По сути, перед нами снабберная цепь без потерь. При увеличении значения емкости Cclamp наступает квазирезонансный режим переключения. Коэффициент заполнения — менее 0,5.