Постоянные магниты, их описание и принцип действия

Наряду с электризующимися трением кусочками янтаря постоянные магниты были для древних людей первым материальным свидетельством электромагнитных явлений (молнии на заре истории определенно относили к сфере проявления нематериальных сил). Объяснение природы ферромагнетизма всегда занимало пытливые умы ученых, однако и в настоящее время физическая природа постоянной намагниченности некоторых веществ, как природных, так и искусственно созданных, еще не до конца раскрыта, оставляя немалое поле деятельности для современных и будущих исследователей.

Традиционные материалы для постоянных магнитов

Они стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители.

Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением.

Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman.

Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже.

Из истории магнетизма

В VI в. до н.э. в древнем Китае был обнаружен минерал (горная порода), который притягивал к себе железные предметы. Китайцы дали ему название “чу-ши”, что переводится как “любящий камень. “Любящий” — в смысле притягивающий.

Слово “магнит” ввели в обиход древние греки в V в. до н.э. Существует легенда, что первые образцы этих необычных “черных камней” были найдены вблизи города Магнесу, где были обнаружены залежи магнетита. Магнит переводится как “камень из Магнесии”.

Магнетит — это железорудный минерал черного цвета, оксид железа Fe3O4, который имеет природные магнитные свойства.

Неодимовые постоянные магниты

Они представляют новейшее и наиболее значительное достижение в этой области на протяжении последних десятилетий. Впервые об их открытии было объявлено почти одновременно в конце 1983 года специалистами по металлам компаний Sumitomo и General Motors. Они основаны на интерметаллическом соединении NdFeB: сплаве неодима, железа и бора. Из них неодим является редкоземельным элементом, добываемым из минерала моназита.

Огромный интерес, которые вызвали эти постоянные магниты, возникает потому, что в первый раз был получен новый магнитный материал, который не только сильнее, чем у предыдущего поколения, но является более экономичным. Он состоит в основном из железа, которое намного дешевле, чем кобальт, и из неодима, являющегося одним из наиболее распространенных редкоземельных материалов, запасы которого на Земле больше, чем свинца. В главных редкоземельных минералах моназите и бастанезите содержится в пять-десять раз больше неодима, чем самария.

Разновидности магнитов

Постоянный магнит – объект, созданный из намагниченного вещества, которое формирует собственное магнитное поле. В качестве примера можно привести обыкновенный магнитик на холодильник. Есть разные виды магнитов. Материалы, поддающиеся намагничиванию или легко притягивающиеся, именуют ферромагнитными.

Существует также электромагнит, который намагничивается только в том случае, если сквозь него пустить электрический ток.

Этот магнит напоминает подкову и создан из альнико (железный сплав). Форма позволяет ему прижать два магнитных полюса, чтобы сформировать сильное магнитное поле, способное удержать тяжелые железные обломки

Физический механизм постоянной намагниченности

Чтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнит размагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается.

Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже.

При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену.

Как делают магниты разными способами

Прессованные магнитопласты – это магниты, полученные путем смешивания специального вида порошка NdFeB с полимерными связывающими материалами. Затем эта масса прессуется в форму и нагревается.

Магнитные изделия, получаемые таким способом, могут быть сложных форм, и обычно не требуют дополнительной обработки. Они имеют более низкую энергию продукта, чем спеченные магниты, до 10 МГсЭ.

Изотропные магнитопласты NdFeB могут быть намагничены в любом направлении.

При использовании специальных соленоидов можно получить многополюсные магниты или магниты со специальной формой магнитного поля.

Разумеется, такие сложные соленоиды могут стоить очень дорого в зависимости от сложности конструкции и требуемой производительности.

Литые магнитопласты – при этом способе производства магнитов порошок NdFeB смешивается с полимерным материалом и выдавливается в форму. Получающиеся магнитные изделия имеют энергию продукта до 5 МГсЭ, но могут быть сделаны замысловатых форм.

Спеченные неомагниты – мелкий порошок NdFeB запрессовывается в форму, затем спекается и обрабатывается до нужного размера (шлифуется).

Производство неодимовых магнитов – сложный высокотехнологичный процесс, требующий соблюдения состава, содержания примесей. Все операции, кроме шлифовки в размер, проводятся без доступа кислорода в вакууме или атмосфере инертных газов. Направление намагниченности задается текстурой магнитного поля во время прессования.

Индукция и намагниченность

Атомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой:

B = µ0 (H + M),

где µ0 является константой.

В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен:

H∙2πR = iw=0 , откуда H=0.

Следовательно, намагниченность в кольцевом магните:

M= B/µ0.

В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной lзаз в сердечнике длиной lсер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим:

Hсер l сер + (1/ µ0)Blзаз = iw=0.

Поскольку B = µ0(Hсер + Мсер), то, подставляя ее выражение в предыдущее, получим:

Hсер(l сер + lзаз) + Мсер lзаз=0,

или

Hсер = ─ Мсер lзаз(l сер + lзаз).

В воздушном зазоре:

Hзаз = B/µ0,

причем B определяется по заданной Мсер и найденной Hсер.

Природные (естественные) магниты.

Магнитные свойства некоторых природных минералов были известны еще в древности. Так, найдены письменные свидетельства более чем 2000-летней давности о том, что в древнем Китае использовались естественные постоянные магниты в качестве компасов. О притяжении и отталкивании магнитов и намагничивании ими железных опилок есть упоминания в трудах древнегреческих и римских ученых (например, поэма «О природе вещей» Лукреция Кара).

Природные магниты являются кусками магнитного железняка (магнетита), который состоит из FeO (31 %) и Fe2O (69 %). Поднеся такой кусок минерала к мелким железным пред­метам — гвоздям, опилкам, тонкому лезвию и т. д., он их притянет.

Кривая намагничивания

Начиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже).

Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами:

Вr = μ0 (0 + Мг).

После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита BHC. Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита МНC. Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом.

На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов.


Из него видно, что наибольшей остаточной индукцией Br и коэрцитивной силой (как полной, так и внутренней, т. е. определяемой без учета напряженности H, только по намагниченности M) обладают именно NdFeB-магниты.

Природные (естественные) магниты.

Магнитные свойства некоторых природных минералов были известны еще в древности. Так, найдены письменные свидетельства более чем 2000-летней давности о том, что в древнем Китае использовались естественные постоянные магниты в качестве компасов. О притяжении и отталкивании магнитов и намагничивании ими железных опилок есть упоминания в трудах древнегреческих и римских ученых (например, поэма «О природе вещей» Лукреция Кара).

Природные магниты являются кусками магнитного железняка (магнетита), который состоит из FeO (31 %) и Fe2O (69 %). Поднеся такой кусок минерала к мелким железным пред­метам — гвоздям, опилкам, тонкому лезвию и т. д., он их притянет.

Поверхностные (амперовские) токи

Магнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже).

Постоянный магнит: взаимодействие с объектами, магнитное поле, размагничивание

Постоянные магниты — это вещества, которые обладают постоянной магнитной силой. Концы постоянных магнитов называются полюсами. У каждого магнита два полюса: северный (N) и южный (S). На некоторых магнитах они отмечены двумя цветами (чаще всего синим и красным).

Постоянные магниты в отличие от электромагнитов, не требуют электричества для создания своего магнитного поля. Постоянные магниты всегда состоят из ферромагнитных материалов, элементарные магниты которых, атомные спины, выровнены параллельно в процессе намагничивания. Это может произойти при охлаждении расплавленных ферромагнитных пород. Такая горная порода (магнетиты) была исторически найдена древними греками около города Магнесия (город в Малой Азии). Таким образом, город Магнезия является историческим эпонимом магнетизма.

Небольшие постоянные магниты используются для сбора мелких металлических деталей или для крепления легких предметов к магнитным доскам. Например, наконечники некоторых отверток намагничены, что позволяет удерживать металлический винт в поворотном шлице. Постоянные магниты также используются там, где необходимо создать электрический ток в небольших генераторах с помощью электромагнитной индукции. Примером этого является динамо-машина для велосипеда.

Как магниты взаимодействуют с другими объектами?

Ещё древнегреческий ученый Фалес Милетский заметил, что предметы из магнетита взаимодействуют с предметами, содержащими железо.

Поднося магнит к предметам, изготовленным из различных материалов, можно установить, что магнитом притягиваются очень не многие из них. Хорошо притягиваются магнитом чугун, сталь, железо и некоторые сплавы, гораздо слабее никель и кобальт. Вообще не притягиваются магнитами тела из цветным металлов, например, медь, алюминий и другие.

Постоянные магниты могут притягивать ферромагнитные вещества (например, железо) или отталкивать друг друга на одноименных полюсах (северный полюс к северному полюсу, южный полюс к южному полюсу). По сути, тела, длительное время сохраняющие намагниченность, и есть постоянные магниты или просто магниты.

Северный полюс постоянного магнита притягивает южный полюс другого постоянного магнита и наоборот. Между одноименными полюсами (северный полюс к северному полюсу, южный полюс к южному полюсу), напротив, действуют отталкивающие магнитные силы.


Рис. 1. Постоянные магниты

Однако постоянные магниты могут быть получены и искусственным путем. В этом процессе сильные ферромагнитные металлы, обычно сплавы, такие как самарий-кобальт, намагничиваются сильным внешним магнитным полем. Этот процесс намагничивания демонстрирует так называемый гистерезис, то есть несимметричное поведение материала при увеличении и последующем уменьшении внешнего магнитного поля. Гистерезис возникает потому, что выравнивание элементарных магнитов в ферромагните стабилизируется обменным взаимодействием, поэтому материал, который уже был намагничен, имеет другие свойства, чем ферромагнит, который еще не был намагничен.

Благодаря гистерезису магнитное поле сохраняется в ферромагните даже при отключении внешнего магнитного поля. Таким образом, намагниченный материал становится постоянным магнитом. Оставшаяся плотность магнитного потока называется остаточной намагниченностью.

Магнитное поле постоянных магнитов.

Магниты взаимодействуют не только с другими объектами, но и друг с другом. Пространство вокруг магнита, в котором действуют магнитные силы, называется магнитным полем.

А именно, если приблизить красный северный полюс стержневого магнита к северному полюсу второго, вращающегося магнита, то северный полюс этого магнита отворачивается от северного полюса стержневого магнита, — это работает как сила между двумя северными полюсами магнитов, и два одинаковых полюса отталкиваются друг от друга.

Если, с другой стороны, приблизить зеленый южный полюс стержневого магнита к красному северному полюсу вращающегося магнита, то северный полюс повернется к южному полюсу стержневого магнита. Между двумя разными полюсами также действует сила. Два разных полюса притягиваются друг к другу.

В обоих случаях действует следующее: если вы снова уберете стержневой магнит, поворотный магнит вернется в исходное положение. Применимо следующее: чем больше расстояние между полюсами, тем меньше силовое воздействие и, следовательно, отклонение магнита.


Силовое воздействие между полюсами магнитов

С помощью железных опилок можно получить представление о виде магнитного поля постоянных магнитов. Рисунок 2 даёт представление о картине магнитного поля полосового магнита. Как магнитные линии магнитного поля электрического тока, так и магнитные линии магнитного поля магнита — это замкнутые линии. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита, так же как магнитные линии катушки с электрическим током.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010.


Рис. 2. Опыт с железными опилками, которые расположились согласно силовым линиям магнитного поля полосового магнита
Что произойдет, если мы попытаемся разделить один магнит на два? Если мы повторим эксперименты с каждым из кусочков, мы обнаружим, что вокруг каждого из них есть магнитное поле. Оказалось, что из одного магнита были созданы два магнита. Мы никогда не можем получить один магнитный полюс. Как итог, магнитные полюса в магнитах всегда расположены попарно.

Размагничивание.

Размагничивание постоянного магнита возможно под воздействием тепла, сильной механической вибрации или сильного внешнего магнитного поля.

В то время как электромагнит может быть выключен простым выключением электрического тока, а полярность можно изменить, изменив направление электрического тока на противоположное, «выключить» постоянный магнит не представляется возможным. Отсюда и термин «постоянный».

Постоянный магнит остается магнитным до тех пор, пока выравнивание атомных спинов не будет снова нарушено внешним воздействием (тепло, сильные удары, магнитные поля). Тогда магнитные силы исчезают, и материал приходится намагничивать заново. В крайних случаях материал может быть даже поврежден. Поэтому каждый постоянный магнит имеет максимальную рабочую температуру. При превышении этой температуры возможны повреждения. Выше температуры Кюри, характерной для конкретного материала, магнит в любом случае полностью размагничивается.

Сила магнитного поля постоянного магнита.

Сила магнитного поля постоянного магнита зависит от используемого материала, а также от точности, с которой осуществляется намагничивание материала. Намагничивание приводит к высокой остаточной намагниченности только в том случае, если достигается полное выравнивание всех спинов атомов. Для этого требуются подходящие материалы и технические ноу-хау.

Как описывается уравнениями Максвелла, — магнитные поля всегда исходят от движущихся зарядов. Существуют только магнитные поля, обусловленные движением заряда, которые всегда создают магнитное поле с северным и южным полюсом.

Силы магнитного поля постоянных магнитов объясняются микроскопическим движением зарядов в веществе. Например, электроны в атомах движутся с огромной скоростью. Электроны имеют характерный электронный спин. Из общего состояния движения электронов возникает магнитный момент и, следовательно, сила магнитного поля.

Магнитные силы всегда действуют вдоль магнитного поля. Это может быть представлено линиями поля. Линии поля также указывают направление и величину магнитных сил.


Рис. 3. Магнитное поле постоянного магнита

На рисунке 3 вы можете видеть, что петля проводника с электрическим током (слева) создает магнитное поле. Величина этого магнитного поля измеряется магнитным моментом. В ферромагнитном материале существует множество магнитных моментов (центр рисунка). Если все они выровнены параллельно, создается постоянный магнит. Постоянный магнит имеет магнитное поле, идентичное магнитному полю катушки. На представленном рисунке схематично обозначены только несколько линий магнитного поля.

Постоянные магниты могут быть изготовлены в широком разнообразии форм. Например, подковообразный магнит показан на рисунке 3 справа. В подковообразном магните северный и южный полюса расположены напротив друг друга. Поскольку линии магнитного поля всегда замкнуты как единое целое, они проходят от северного полюса к южному, а затем возвращаются к северному полюсу в материале. В воздушном пространстве подковообразного магнита это приводит к однородному магнитному полю с силовыми линиями, проходящими параллельно между полюсами.

Есть ли токи внутри магнита?

Представим себе, что весь объем некоторого стержневого постоянного магнита (с произвольной формой поперечного сечения) заполнен микроскопическими амперовскими токами. Поперечный разрез магнита с такими токами показан на рисунке ниже.

Каждый из них обладает магнитным моментом. При одинаковой ориентации их по направлению внешнего поля они образуют результирующий магнитный момент, отличный от нуля. Он и определяет существование магнитного поля при кажущемся отсутствии упорядоченного движения зарядов, при отсутствии тока через любое сечение магнита. Легко также понять, что внутри него токи смежных (соприкасающихся) контуров компенсируются. Нескомпенсированными оказываются только токи на поверхности тела, образующие поверхностный ток постоянного магнита. Плотность его оказывается равной намагниченности M.

Из чего делают магниты?

Для производства постоянных и временных магнитов используют железо, неодим, бор, кобальт, самарий, альнико и ферриты.

Они в несколько этапов измельчаются и вместе плавятся, пекутся или спрессовываются до получения постоянного или временного магнитного поля. В зависимости от вида магнитов и требуемых характеристик, меняется состав и пропорции компонентов.

Как избавиться от подвижных контактов

Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты – контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.

Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.

Графическое изображение полей

Магниты действуют друг на друга и на железосодержащие предметы посредством магнитного поля. Поле не имеет цвета, запаха, его нельзя ощущать. Это особый вид материи, который проявляется по его действию на другое поле или на физические тела.

Условно изображают магнитное поле с помощью силовых линий, так же, как электрическое поле.

Эти линии замкнуты, то есть не имеют ни начала, ни конца. Направление, куда показывают северные полюсы магнитных стрелок, попавших в поле магнита, принято за направление силовых магнитных линий поля. Таковым оказывается направление от северного полюса к южному.

Хотя изображение силовых линий принято за условное, они все же проявляются в простом опыте с железными опилками. Если положить магнит на лист бумаги и посыпать мелкими опилками из железа, то можно увидеть, как они выстроятся вдоль определенных линий, как маленькие магнитные стрелки.

Частота линий вокруг магнита различна. Это подчеркивает более сильное действие магнитного поля около полюсов, где силовые линии плотнее.

Двигатель на постоянных магнитах

В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.

Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.

Магнитное поле тока прямого проводника

Определить наличие магнитного поля можно, если к магниту поднести магнитную стрелку. Если поле есть, то стрелка повернется и займет положение по правилу взаимодействия полюсов. Северный полюс стрелки повернется к южному полюсу магнита.

Будет ли оказывать действие на стрелку электрический ток?

Проверить это можно с помощью опыта. Стрелка установлена на острие, над нею параллельно ее оси помещен проводник. Если замкнуть цепь, стрелка повернется в другое положение, при выключенной цепи вернется обратно.

Впервые проведя этот опыт в 1820 году, датский ученый Ганс Христиан Эрстед, не имея достаточно знаний о магнетизме, не сумел объяснить поведение стрелки около проводника с током. Это было сделано позднее, а опыт получил название «Опыта Эрстеда».

Получается, что электрический ток может быть источником магнитного поля, которое возникает вокруг движущихся зарядов (вокруг не движущихся зарядов есть только электрическое поле).

Нет ли противоречия в наличии магнитного поля вокруг тока, где направленно движутся частицы, и магнитного поля около постоянных магнитов? Оказывается, в магнитах существуют так называемые молекулярные токи, циркулирующие внутри молекул. Во времена Эрстеда природа таких токов была еще не открыта. Теперь же известно, что в атоме постоянно движутся электроны, поэтому и возникают магнитные свойства некоторых природных веществ, например, железа.

По примеру магнитов для графического изображения поля вокруг тока используют силовые магнитные линии. Направление их указывают северные полюсы магнитных стрелок, помещенных в это поле.

Расположение стрелок показывает, что:

Существует так называемое первое правило правой руки, по которому можно указать направление силовых линий магнитного поля вокруг проводника с током. При изменении направления тока меняется и направление силовых линий поля. Правая рука человека помогает разобраться в этих направлениях.

Конечно, правило применяется не буквально. Не нужно провод брать в руки, надо мысленно представить эту ситуацию с проводником и рукой.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]