ГИСТЕРЕ́ЗИС
ГИСТЕРЕ́ЗИС (от греч. ὑστέρησις – отставание, запаздывание), запаздывание изменения физич. величины, характеризующей состояние вещества, от изменения др. физич. величины, определяющей внешние условия. Г. имеет место в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. В результате для циклич. процесса (рост и уменьшение внешнего воздействия) получается петлеобразная (неоднозначная) диаграмма, которая называется петлёй гистерезиса. Возникает Г. в разл. веществах и при разных физич. процессах. Наибольший интерес представляют магнитный, сегнетоэлектрический и упругий гистерезис.
Магнитный Г. – неоднозначная зависимость намагниченности $\boldsymbol M$ магнитоупорядоченного вещества (магнетика, напр., ферро- или ферримагнетика) от внешнего магнитного поля $\boldsymbol H$ при его циклич. изменении (увеличении и уменьшении). Причиной существования магнитного Г. является наличие в определённом интервале изменения $\boldsymbol H$ среди состояний магнетика, отвечающих минимуму термодинамич. потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Магнитный Г. можно также рассматривать как проявление магнитных ориентационных фазовых переходов 1-го рода, для которых прямой и обратный переходы между фазами в зависимости от $\boldsymbol H$ происходят, в силу указанной метастабильности состояний, при разл. значениях $\boldsymbol H$.
Рис. 1. Петли магнитного гистерезиса:1 – максимальная, 2 – частная; а – кривая намагничивания, б и в – кривые перемагничивания; МR – остаточная намагниченность, Нс – коэрцитивная сила, Ms – намагничен…
На рис. 1 схематически показана типичная зависимость $M$ от $H$ в ферромагнетике; из состояния $M=0$ при $H=0$ с увеличением $H$ значение $M$ растёт (осн. кривая намагничивания, $\it а$) и в достаточно сильном поле $H⩾H_{\text m}$ $M$ становится практически постоянной и равной намагниченности насыщения $M_{\text s}$. При уменьшении $H$ от значения $H_{\text m}$ намагниченность изменяется вдоль ветви $\it б$ и при $H=0$ принимает значение $M=M_{\text R}$ (остаточная намагниченность). Для размагничивания вещества ($M=0$) необходимо приложить обратное поле $H= –H_{\text c}$, называемое коэрцитивной силой. Далее при $H=–H_{\text m}$ образец намагничивается до насыщения ($M=–M_{\text s}$) в обратном направлении. При изменении $H$ от $–H_{\text m}$ до $+H_{\text m}$ намагниченность изменяется вдоль кривой $\it в$. Ветви $\it б$ и $\it в$, получающиеся при изменении $H$ от $+H_{\text m}$ до $–H_{\text m}$ и обратно, образуют замкнутую кривую, называемую максимальной (или предельной) петлёй Г. Ветви $\it б$ и $\it в$ называются, соответственно, нисходящей и восходящей ветвями петли Г. При изменении $H$ на отрезке $[–H_1, H_1]$ с $H_1$ зависимость $M(H)$ описывается замкнутой кривой (частной петлёй Г.), целиком лежащей внутри макс. петли гистерезиса.
Описанные петли Г. характерны для достаточно медленных (квазистатических) процессов перемагничивания. Отставание $M$ от $H$ при намагничивании и размагничивании приводит к тому, что энергия, приобретаемая магнетиком при намагничивании, не полностью отдаётся при paзмагничивании. Теряемая за один цикл энергия определяется площадью петли Г. Эти потери энергии называются гистерезисными. При динамич. перемагничивании образца переменным магнитным полем $\boldsymbol H_{\sim}$ петля Г. оказывается шире статической вследствие того, что к квазиравновесным гистерезисным потерям добавляются динамические, которые могут быть связаны с вихревыми токами (в проводниках) и релаксационными явлениями.
Форма петли Г. и наиболее важные характеристики магнитного Г. (гистерезисные потери, $H_с$, $M_{\text R}$ и др.) зависят от химич. состава вещества, его структурного состояния и темп-ры, от характера и распределения дефектов в образце, а следовательно, от технологии его пригoтовления и последующих физич. обработок (тепловой, механич., термомагнитной и др.). С магнитным Г. связано гистерезисное поведение целого ряда др. физич. свойств, напр. Г. магнитострикции, Г. гальваномагнитных и магнитооптич. явлений и т. д.
Сегнетоэлектрический Г. – неоднозначная зависимость величины вектора электрич. поляризации $\boldsymbol P$ сегнетоэлектриков от напряжённости $\boldsymbol E$ внешнего электрич. поля при циклич. изменении последнего. Сегнетоэлектрики обладают в определённом температурном интервале спонтанной (т. е. самопроизвольной, возникающей в отсутствие внешнего поля) поляризацией $\boldsymbol P_{сп}$. Направление поляризации может быть изменено электрич. полем, при этом значение $\boldsymbol P$ при данном $\boldsymbol E$ зависит от предыстории, т. е. от того, каким было электрич. поле в предшествующие моменты времени. Сегнетоэлектрич. Г. имеет вид характерной петли (петля Г.), осн. параметрами которой являются остаточная поляризация $\boldsymbol P_{ост}$ при $\boldsymbol E=0$ и коэрцитивное поле $\boldsymbol E_к$, при котором происходит изменение направления (переключение) вектора $\boldsymbol P_{сп}$. Для совершенных монокристаллов петля Г. имеет форму, близкую к прямоугольной, и $\boldsymbol P_{ост}=\boldsymbol P_{сп}$. В реальных кристаллах остаточная поляризация меньше спонтанной из-за разбиения кристалла на домены.
Существование сегнетоэлектрич. Г. следует из феноменологич. теории сегнетоэлектрич. явлений, в соответствии с которой равновесным значениям $\boldsymbol P_{сп}$ при любой темп-ре ниже темп-ры сегнетоэлектрич. фазового перехода отвечают два симметричных минимума термодинамич. потенциала, разделённые потенциальным барьером. При $E=±E_к$ один из минимумов исчезает, и кристалл оказывается в состоянии с определённым направлением вектора $\boldsymbol P_{сп}$. При циклич. переключении спонтанной поляризации площадь петли Г. определяет гистерезисные потери – количество энергии электрич. поля, переходящей в теплоту. Величина коэрцитивного поля связана также с процессами зарождения и эволюции в электрич. поле сегнетоэлектрич. доменов – областей кристалла с выделенным электрич. полем направлением вектора спонтанной поляризации.
Рис. 2. Петля упругого гистерезиса.
Упругий Г. – неоднозначная зависимость механического напряжения от деформации упругого тела при циклич. приложении и снятии нагрузки. График зависимости напряжения $σ$ от деформации $ε$ отличается от отрезка прямой линии, соответствующей закону Гука, и представляет собой петлю Г. (рис. 2). Площадь этой петли пропорциональна механической энергии, которая рассеялась (превратилась в теплоту) во время цикла.
Появление упругого Г. в металлах связано с тем, что в некоторых зёрнах поликристалла микронапряжения существенно превышают ср. напряжения в образце, что приводит к появлению пластич. деформаций и тем самым к рассеянию механич. энергии. В некоторых случаях вклад в упругий Г. дают электромагнитные явления.
Упругий Г. как проявление отличия реального упругого тела от идеально упругого наблюдается у всех твёрдых тел, даже при весьма низких темп-рах. Упругий Г. является причиной затухания свободных колебаний упругих тел, затухания в них звука, уменьшения коэф. восстановления при неупругом ударе и др. В общем случае отклонение упругости от идеальной включается в понятие внутреннего трения.
Общие понятия гистерезиса
Гистерезис можно наблюдать в те моменты, когда какое-либо тело в конкретный период времени будет находиться в зависимости от внешних условий. Данное состояние тела рассматривается и в предыдущее время, после чего производится сравнение и выводится определенная зависимость.
Подобная зависимость хорошо просматривается на примере человеческого тела. Чтобы изменить его состояние потребуется какой-то отрезок времени на релаксацию. Поэтому реакция тела будет всегда отставать от причин, вызвавших измененное состояние. Данное отставание значительно уменьшается, если изменение внешних условий также будет замедляться. Тем не менее, в некоторых случаях может не произойти уменьшения отставаний. В результате, возникает неоднозначная зависимость величин, известная как гистерезисная, а само явление называется гистерезисом.
Эта физическая величина может встречаться в самых разных веществах и процессах, однако чаще всего рассматриваются понятия диэлектрического, магнитного и упругого гистерезиса. Магнитный гистерезис как правило появляется в магнитных веществах, например, таких как ферромагнетики. Характерной особенностью этих материалов является самопроизвольная или спонтанная неоднородная намагниченность, наглядно демонстрирующая это физическое явление.
Магнитный гистерезис
Магнитный гистерезис — явление зависимости вектора намагничивания и вектора магнитной индукции в веществе не только от приложенного внешнего поля, но и от истории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.
Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. При полной ориентации всех доменов в направлении внешнего поля (ферромагнетик становится «однодоменным») достигается состояние насыщения. При выключении внешнего поля происходит некоторое уменьшение намагниченности вследствие теплового движения в кристалле, однако ферромагнетик остается намагниченным, так как при невысоких температурах энергия теплового движения сравнительно невелика и ее недостаточно для полной разориентации доменов.
Эти процессы требуют больших энергетических затрат и являются нелинейными. Кривая размагничивания ферромагнетика не совпадает с кривой намагничивания. Изменение намагниченности ферромагнетика (и индукции поля в нем) запаздывает по отношению к изменению напряженности внешнего поля. Это явление называется гистерезисом. При уменьшении напряженности внешнего поля до нуля, индукция поля в магнетике не равна нулю, ее величина называется остаточной индукцией Во. Чтобы полностью размагнитить магнетик, надо изменить направление внешнего поля на противоположное, и увеличивать его. При некотором значении напряженности «обратного» поля Нс, называемом коэрцитивной силой, магнетик полностью размагничивается. Замкнутая кривая, отражающая процесс перемагничивания ферромагнетиков, называется петлей гистерезиса (рис.1).
Рис.1. Петля гистерезиса
На данном графике точки В и С характеризуют состояние насыщения. Величина остаточной индукции характеризуется отрезком B0.
Коэрцитивная сила определяется точкой пересечения петли гистерезиса с осью напряженности магнитного поля. По величине коэрцитивной силы ферромагнетики разделяются на мягкие и жесткие магнитные материалы.
Жесткие ферромагнетики используются для постоянных магнитов, они имеют большую остаточную намагниченность и широкую петлю гистерезиса.
Мягкие ферромагнетики применяются в приборах и установках, работающих с переменными электромагнитными полями, где требуется частое перемагничивание при минимальных энергетических потерях (например, в сердечниках трансформаторов). Для них характерна небольшая остаточная намагниченность и узкая петля гистерезиса.
Терминология
Гистерезис происходит от греческого языка, означает отставание или запаздывание. Это понятие используют в различных отраслях научных и технических знаний. Самое общее значение этого слова подразумевает разную манеру поведения систем в противоположном влиянии.
Детально это можно объяснить следующим образом. Гистерезис – это условие, возникающее вследствие воздействия одной физической величины, намагниченности, на другую физическую величину из внешней среды, магнитное поле.
Такое условие можно наблюдать в том случае, если состояние предмета изменяется под давлением внешних условий в этот же и предыдущий период времени.
Неоднозначность зависимости таких значений может наблюдаться в разных процессах потому, что, чтобы состояние тела претерпело изменение, ему необходимо определенный промежуток времени. И чем выше медлительность изменения внешней среды, тем меньше такое отставание. Это и является гистерезисом. Он бывает магнитным, диэлектрическим и упругим условием.
Нас интересует данное магнитное явление, возникающее в электротехнике. Оно является важной характеристикой для металла, из которого изготавливают сердечник электрической машины или аппарата. Давайте рассмотрим этот процесс с помощью графика.
Здесь изображена первоначальная кривая намагничивания ферромагнитного материала. Подробно это можно описать так.
Изначально намагнитив сердечник вплоть до насыщения в отрезке «индукция Bs, напряженность Hs» и снизив напряженность от +Hs до 0, индукция не изменится по кривой 3, а пойдет по проходящему выше участку ABr кривой I. Намагниченность материала останется при Н=0, а поле приобретет характеристику остаточной индукции Br.
При увеличении Н от 0 до значения Н=-Hs, изменится направление тока в катушке и знак напряженности магнитного поля Н. При достижении индукцией нулевых значений при указании напряженности поля Н=Нс, что является коэрцитивной силой, изменится знак и будет достигнута индукция насыщения В=-Вs при Н=-Нs.
Намагнитившись, в течение полного цикла зависимостью B (H) описывается петля I, которая называется предельная петля магнитного гистерезиса. Исходя из величины Pc по предельной петле бывают мягкие и твердые ферромагнетики.
В практических целях это можно описать следующим образом. Проводники пропускают ток и способствуют возникновению магнитного и электрического полей вокруг него. Получение электромагнита происходит путем сматывания провода в катушку и пропуска тока. Индуктивность катушки увеличится при помещении внутри нее сердечника с увеличением сил, возникших у нее.
Гистерезис зависим от металла, из которого изготовлен сердечник, именно его вид определяет свойства и работу, обозначаемую кривыми намагничивания.
При использовании магнитотвердых металлов типа стали, мы заметим расширение гистерезиса. Если наш выбор остановится на мягких материалах, то будем наблюдать сужение графика.
Через катушку в цепи с переменным током будут наблюдаться движения тока в разных противоположных направлениях.
Вследствие этого все время будет происходить переворачивание полюсов. Этот процесс является одновременным в случае катушки, у которой отсутствует сердечник.
Однако при его наличии все немного изменится. Произойдет постепенное намагничивание, магнитная индукция возрастет и горизонтальный участок графика, обозначаемый как участок насыщения, будет достигнут.
Если целенаправленно менять направление тока и магнитного поля, то произойдет перемагничивание сердечника. Даже при простом выключении тока и исключении магнитного поля сердечник останется намагниченным, при этом претерпит некоторые изменения.
Для его размагничивания до первоначальных характеристик необходимо создание минусовой напряженности магнитного поля. Значит, катушка с током должны сработать в противоположную сторону.
Здесь следует снова упомянуть такое понятие как коэрцитивная сила и дать ей понятное определение, исходя из практики. Она показывает насколько трудный процесс намагничивания, когда сердечник полностью размагничен. Лучше, если она малая.
Обратное перемагничивание происходит также, но при участии нижней ветви.
Это означает, что сердечник будет магнититься за счет части энергии в цепи переменных токов, что приведет к снижению коэффициента полезного действия электродвигателя, трансформатора и нагреву деталей.
Для того, чтобы потери в связи с перемагничиванием сердечника были минимальными, гистерезис и показатели коэрцитивной силы должны быть малы.
Возникает данное явление в работе реле, в иных электромагнитных устройствах и в токе выключения и заключения.
Реле сработает и в выключенном состоянии, если подать немного тока. При включении ток заключения будет выше тока удержания. Отключение произойдет, если эти величины изменятся на прямо противоположные значения.
Петля гистерезиса
На графике зависимости М от Н можно видеть:
- Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
- Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
- При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
- При увеличении Н в интервале –Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
- Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса – процессы намагничивания и размагничивания.