Какая мощность рассеивается на полупроводнике в виде тепла?


Как рассчитать мощность резистора?

У резистора есть довольно важный параметр, который целиком и полностью влияет на надёжность его работы. Этот параметр называется мощностью рассеивания. Он уже упоминался в статье о параметрах резистора.

Сама по себе мощность постоянного тока рассчитывается по простой формуле:

Как видим, мощность зависит от напряжения и тока. В реальной цепи через резистор протекает определённый ток. Поскольку резистор обладает сопротивлением, то под действием протекающего тока резистор нагревается. На нём выделяется какое-то количество тепла. Это и есть та мощность, которая рассеивается на резисторе.

Если в схему установить резистор меньшей мощности рассеивания, чем требуется, то резистор будет нагреваться и в результате сгорит. Поэтому, если в схеме нужно заменить резистор мощностью 0,5 Ватт, то ставим на 0,5 Ватт и более. Но никак не меньше !

Каждый резистор рассчитан на свою мощность. Стандартный ряд мощностей рассеивания резисторов состоит из значений:

Чем больше резистор по размерам, тем, как правило, на большую мощность рассеивания он рассчитан.

Допустим, у нас есть резистор с номинальным сопротивлением 100 Ом. Через него течёт ток 0,1 Ампер. На какую мощность должен быть рассчитан этот резистор?

Тут нам потребуется формула. Выглядит она так:

R(Ом) – сопротивление цепи (в данном случае резистора);

I(А) – ток, протекающий через резистор.

Все расчёты следует производить, строго соблюдая размерность. Так, если сопротивление резистора не 100 Ом, а 1 кОм, то в формулу нужно подставить значение в Омах, т.е. 1000 Ом (1 кОм = 1000 Ом). Тоже правило касается и других величин (тока, напряжения).

Рассчитаем мощность для нашего резистора:

Мы получили мощность 1 Ватт. Теперь небольшое отступление.

В реальную схему необходимо устанавливать резистор с мощностью в полтора – два раза выше рассчитанной.

Поэтому нам подойдёт резистор мощностью 2 Вт (см. стандартный ряд мощностей резисторов).

Также есть и другая формула для расчёта мощности. Она применяется в том случае, если неизвестен ток, который протекает через резистор.

Всё бы хорошо, но в жизни бывают случаи, когда применяется последовательное или параллельное соединение резисторов. Как рассчитать мощность рассеивания для каждого из резисторов в последовательной или параллельной цепи?

Допустим, нам требуется заменить резистор сопротивлением 100 Ом. Протекающий через него ток равен 0,1 Ампер. Следовательно, мощность этого резистора 1 Ватт.

Для его замены можно применить два соединённых последовательно резистора сопротивлением 20 Ом и 80 Ом. На какую мощность должны быть рассчитаны эти резисторы?

Для последовательной цепи действует одно правило. Через последовательно соединённые резисторы течёт один и тот же ток. Теперь применим формулу для расчёта мощности и получим, что мощность рассеивания резистора на 20 Ом должна быть равна 0,2 Вт, а резистора на 80 Ом — 0,8 Вт. Выбираем резисторы согласно стандартному ряду мощностей:

Как видим, если сопротивления резисторов будут разные, то и мощность на них будет выделяться разная.

Как работает PNP транзистор

Принцип работы PNP транзистора

Рассмотрим вот такой рисунок:

Здесь мы видим трубу, по которой течет вода снизу вверх под высоким давлением. В данный момент труба закрыта красной заслонкой и поэтому потока воды нет.

Но как только мы оттягиваем заслонку, чуток потянув зеленый рычажок, то красная заслонка оттягивается и бурный поток воды бежит по трубе снизу вверх.

Но вот мы снова отпускаем зеленый рычажок, и синяя пружина возвращает заслонку в исходное положение и преграждает путь воде

То есть мы чуток притянули заслонку к себе, и вода побежала через трубу бешеным потоком. Почти точно также ведет себя PNP транзистор. Если представить эту трубу как транзистор, то его выводы будут выглядеть вот так:

Значит, для того, чтобы ток бежал от эмиттера к коллектору (а вы ведь помните, что ток должен бежать туда, куда показывает стрелка эмиттера)

мы должны сделать так, чтобы из базы вытекал ток, или выражаясь дилетантским языком, подавать на базу минус питания («оттягивать» напряжение на себя).

Работа PNP транзистора на реальном примере

Ну что, давайте проведем долгожданный опыт. Для этого возьмем транзистор КТ814Б, который является комплиментарной парой транзистору КТ815Б.

Кто плохо читал прошлые статьи, хочу напомнить, что комплиментарная пара для кого-либо транзистора — это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть NPN, а КТ814 прямой проводимости, то есть PNP. Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815. Короче говоря, зеркальные братья-близнецы.

Транзистор КТ814Б является транзистором PNP проводимости:

Вот его цоколевка:

Для того, чтобы показать принцип его работы, мы его соберем по схеме с Общим Эмиттером (ОЭ):

На деле вся схема выглядит как-то так:

Синие проводки-крокодилы идут от блока питания Bat1, а другие два провода с крокодилами, черный и красный, от блока питания Bat2.

Итак, для того, чтобы схема заработала, выставляем на Bat2 напряжение для питания лампочки накаливания. Так как лампочка у нас на 6 Вольт, то и выставляем 6 Вольт.

На блоке питания Bat1 аккуратно добавляем напряжение от нуля и пока не загорится лампочка накаливания. И вот при напряжении в 0,6 Вольт

у нас загорелась лампочка

То есть транзистор «открылся» и через цепь эмиттер-коллектор побежал электрический ток, который заставил гореть нашу лампочку. Напряжение открытия — это падение напряжение на PN-переходе база-эмиттер. Как вы помните, для кремниевых транзисторов ( а транзистор КТ814Б у нас кремниевый, об этом говорит буква «К» в начале его названия) это значение находится в диапазоне 0,5-0,7 Вольт. То есть чтобы «открыть» транзистор, достаточно подать на базу-эмиттер напряжение более, чем 0,5-0,7 Вольт.

Схемы включения NPN и PNP транзисторов

Итак, посмотрите на две схемы и найдите разницу. Слева NPN транзистор КТ815Б в схеме с ОЭ, а справа КТ814Б по такой же схеме включения:

Ну и в чем заключается различие? Да в полярности питания! И вот теперь можно с уверенностью сказать, что транзистор проводимости PNP открывается «минусом», так как на базу мы подаем «минус», а транзистор проводимости NPN открывается «плюсом».

Приобрести биполярные транзисторы можно тут.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Конечное время нарастания и спадания фронта импульса

Измерение напряжения на входе демпфера (точка Vх на рисунке 1) показывает, что нарастание и спад происходят достаточно быстро. Напряжение поднимается до 19,5 В и опускается до 0 В за 10 нс. Имеет ли это существенное значение? Возвращаясь к расчету, мы повторяем те же вычисления, что и выше, но на этот раз – учитывая время нарастания (рисунок 3).

Рис. 3. Нарастание и спадение сигнала

Уравнения ниже описывают энергию Er1 и Er2, связанную со временем нарастания Тr и ТON соответственно:

$$E_{r1}=CV^{2}\times \frac{\tau}{T_{r}}\times \left(T_{r}-\frac{3}{2}\tau+2\tau e^{-\frac{T_{r}}{\tau}}-\frac{\tau}{2}e^{-\frac{2T_{r}}{\tau}} \right)$$

$$V_{r1}=\frac{V}{T_{r}}\times \left[T_{r}-\tau \times (1-e^{-\frac{T_{r}}{\tau}})\right]$$

$$E_{r2}=\frac{CV_{r2}^2}{2}$$

$$V_{r2}=V-V_{r1}$$

Аналогичный набор уравнений получен для спадающего фронта:

$$E_{f1}=CV^{2}\times \frac{\tau}{T_{f}}\times \left(T_{f}-\frac{3}{2}\tau+2\tau e^{-\frac{T_{f}}{\tau}}-\frac{\tau}{2}e^{-\frac{2T_{f}}{\tau}} \right)$$

$$V_{f1}=\frac{V}{T_{f}}\times \left[T_{f}-\tau \times (1-e^{-\frac{T_{f}}{\tau}})\right]$$

$$E_{f2}=\frac{CV_{f2}^2}{2}$$

$$V_{f2}=V-V_{f1}$$

Общая средняя мощность рассеяния представляет собой сумму четырех энергий, умноженную на частоту источника напряжения.

$$P=(E_{r1}+E_{r2}+E_{f1}+E_{f2})\times f$$

Тем не менее, мы обнаруживаем, что расчет потери мощности в случае для неидеального импульса немного сложнее.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I 2 x R = 0,256 2 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
  • P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
  • P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
  • P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при паралл ельном соединение

При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1+Р2+Р3+Р4 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Параллельное соединение


Параллельное соединение светодиодов
В любой точке последовательной цепи сила тока одинаковая. Это упрощает расчет, предотвращает аварийные ситуации. При выходе одного элемента из строя отключаются все светодиоды. Поэтому исключено повреждение повышением напряжения. Отмеченные причины объясняют популярность применения данного способа при создании ленточных светильников, иных конструкций.

Определенные преимущества предоставляет применение параллельного соединения. В этом варианте изделие сохраняет частичную работоспособность при повреждении одной цепи. Такое решение обеспечивает одинаковое напряжение в местах подсоединения к источнику питания каждой ветки.

Параллельное подключение подходит для организации независимых схем управления. На этой технологии основаны принципы работы новогодних гирлянд. Отдельные ветки подключаются к источнику питания по заданному программой алгоритму.

Использовать один резистор для нескольких параллельных диодов нельзя. Тщательный выбор сопротивления объясняется необходимостью точной регулировки тока. В некоторых ситуациях ошибки на 0,1-0,5 А становятся причиной поломок, радикального сокращения ресурса.

Реальные технические характеристики светодиодов значительно отличаются даже в одной товарной партии. По этой причине каждую цепь защищают отдельным резистором.

Резисторы

Соединяем последовательно

[Сопротивление последовательно соединенных резисторов, кОм

] = [
Сопротивление первого резистора, кОм
] + [
Сопротивление второго резистора, кОм
]

[Мощность, рассеиваемая первым резистором, Вт

] = [
Сопротивление первого резистора, кОм
] * [
Сила тока, мА
] ^ 2 / 1000

[Мощность, рассеиваемая вторым резистором, Вт

] = [
Сопротивление второго резистора, кОм
] * [
Сила тока, мА
] ^ 2 / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 1 кОм, 4 Вт.

Включаем параллельно

[Сопротивление параллельно соединенных резисторов, кОм

] = 1 / (1 / [
Сопротивление первого резистора, кОм
] + 1 / [
Сопротивление второго резистора, кОм
])

Эта формула интуитивно понятна, да и формально может быть выведена из следующего соображения. При заданном напряжении на резисторах через каждый из них независимо идет ток, равный напряжению, деленному на сопротивление. Итоговое сопротивление равно напряжению, деленному на суммарный ток. В формулах значение напряжения счастливым образом сокращается, и получается приведенная формула.

[Мощность, рассеиваемая первым резистором, Вт

] = [
Напряжение на резисторах, В
] ^ 2 / [
Сопротивление первого резистора, кОм
] / 1000

[Мощность, рассеиваемая вторым резистором, Вт

] = [
Напряжение на резисторах, В
] ^ 2 / [
Сопротивление первого резистора, кОм
] / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 250 Ом, 4 Вт.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Практика проектирования электронных схем. Самоучитель электроники. Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис. Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис.

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категор. Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Кла.

Плавная регулировка яркости свечения люминесцентных ламп дневного свет. Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра.

Проверка электронных элементов, радиодеталей. Проверить исправность, р. Как проверить исправность детали. Методика испытаний. Какие детали можно использ.

RC — цепь. Резисторно — конденсаторная схема. Резистор, конденсатор. И. Расчет RC — цепи, изменения напряжения на конденсаторе в зависимости от времени.

Силовой резонансный фильтр для получения синусоиды от инвертора. Для получения синусоиды от инвертора нами был применен самодельный силовой резон.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

Читайте также: Для чего нужен шкив коленвала

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]