Импульсный блок питания – подборка схем для самостоятельного изготовления

В быту часто необходим мощный источник питания на фиксированное напряжение. Он может быть использован в качестве зарядного устройства, для питания звуковой аппаратуры (усилителей) и т.д. Подобные блоки питания целесообразно выполнять по импульсной схеме. Такая схемотехника позволяет создавать легкие и мощные источники постоянного напряжения. Сложность схемы начинает отходить на второй план перед ее преимуществами уже при токах нагрузки более 2А. Сделать импульсный блок питания можно своими руками при наличии приборов и определенной квалификации.

Виды и принцип работы импульсных источников питания

Основной принцип работы импульсного источника питания (ИИП) состоит в том, что постоянное напряжение (выпрямленное сетевое или от стороннего источника) преобразовывается в импульсное частотой до сотен килогерц. За счет этого намоточные детали (трансформаторы, дроссели) получаются легкими и компактными.

Принципиально ИИП делятся на две категории:

  • с импульсным трансформатором;
  • с накопительной индуктивностью (она также может иметь вторичные обмотки)

Первые подобны обычным трансформаторным сетевым блокам питания, выходное напряжение у них регулируется изменением среднего тока через обмотку трансформатора. Вторые работают по другому принципу – у них регулируется изменением количества накопленной энергии.

По другим признакам ИИП можно разделить на нестабилизированные и стабилизированные, однополярные и двухполярные и т.п. Эти особенности не носят столь принципиального характера.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Структурная и принципиальная схема основных частей блока


Обобщенная структурная схема импульсного БП.

На входе блока питания устанавливается сетевой фильтр. Принципиально на работу самодельного или промышленного импульсного блока питания он не влияет – все будет функционировать без него. Но отказываться от схемы фильтрации нельзя – из-за крайне нелинейной формы потребляемого тока импульсные источники интенсивно «сыплют» помехами в бытовую сеть 220 вольт. По этой причине работающие от этой же сети устройства на микропроцессорах и микроконтроллерах – от электронных часов до компьютеров – будут работать со сбоями.


Схема сетевого фильтра.

Назначение входного устройства — защита от двух видов помех:

  • синфазной (несимметричной) – возникает между любым проводом и землей (корпусом) БП;
  • дифференциальной (симметричной) – между проводами (полюсами) питания.

Фильтр, как и весь блок питания, на входе защищен предохранителем F (плавким или самовосстанавливающимся). После предохранителя стоит варистор – резистор, сопротивление которого зависит от приложенного напряжения. Пока входное напряжение в норме, сопротивление варистора велико и он не оказывает никакого действия на работу схемы. Если напряжение повышается, сопротивление варистора резко просаживается, что вызывает увеличение тока и сгорание предохранителя.

Конденсаторы Cx блокируют дифференциальные помехи на входе и выходе фильтра в диапазоне до 30 МГц. На частоте 50 Гц их сопротивление велико, поэтому влияния на сетевое напряжение они не оказывают. Их емкость может быть выбрана от 10 до 330 нФ. Резистор Rd устанавливается для безопасности – через него разряжаются конденсаторы после отключения питания.

Синфазные помехи подавляет фильтр на Cy и L. Их значения для частоты среза f связаны формулой Томпсона:

f=1/(2*π*√L*C), где:

  • f – частота среза в кГц (берется частота преобразования импульсника);
  • L – индуктивность дросселя, мкГн;
  • С – емкость Cy, мкФ.

Синфазный дроссель наматывается на ферритовом кольце. Обмотки одинаковые, мотаются на противоположных сторонах.


Конструктив синфазного дросселя.

В отличие от выходного фильтра, на расчет элементов фильтра защиты от помех номинальный ток БП не влияет, за исключением провода, которым наматывается дроссель.

После фильтра сетевое напряжение выпрямляется. В большинстве случаев используется стандартный двухполупериодный мостовой выпрямитель.

Определение источников синфазной помехи

Учет дифференциальной составляющей

При отсутствии специального фильтра дифференциальной помехи в источнике питания, ее доля в синфазной составляющей, отдаваемой в сеть, может быть весьма существенной (пример см. выше). Источником помехи можно считать напряжение Uдиф — напряжение на входе источника питания (после фильтра). Здесь L1, C1, C2 составляют стандартную схему фильтра синфазной помехи. При этом дифференциальная составляющая без помех проходит через дроссель синфазного фильтра и выделяется с соответствующим знаком на делителе напряжения, образованном тестовыми резисторами (рис. 3). Разделительные конденсаторы не показаны, так как их импедансом в рассматриваемой полосе частот можно пренебречь. Напряжение Uдиф может быть достаточно хорошо определено исходя из анализа электрических процессов в преобразователе, в частности в качестве Uдиф может быть принята высокочастотная пульсация на входном конденсаторе, входящем в составе источника питания. Как можно видеть, дифференциальная составляющая совершенно не подавляется синфазным фильтром и может присутствовать в измеряемом сигнале в результате применения методики измерения из [1]. Хороший метод исключения этой составляющей из сигнала помехи — применение дополнительного фильтра дифференциальной помехи (в простейшем случае LC-фильтра).

Рис. 3. Дифференциальная составляющая помехи

Учет синфазной составляющей

Однако основной составляющей помехи относительно заземления (особенно при хорошем фильтре дифференциальной помехи) служит именно синфазная помеха — то есть помеха, одинаковая для обоих входных выводов источника питания в заданном частотном диапазоне. Для данного случая справедлива схема замещения, показанная на рис. 4.

Рис. 4. Синфазная составляющая помехи

Сигнал помехи Uсинф выделяется на Y-кон-денсаторах фильтра (для данной схемы замещения они оказываются включенными параллельно), в результате деления напряжения некого эффективного источника помехи Uef емкостным делителем с коэффициентом передачи (1), верхнее плечо которого образует эффективная емкость Сef.

Чем больше суммарная емкость Y-конден-саторов Cy по сравнению с Cef , тем меньше напряжение помехи. Отметим, что ограничения на увеличение емкости Y-конденсаторов накладывают стандарты безопасности, нормирующие максимально допустимый ток утечки. Далее сигнал помехи фильтруется LR-фильт-ром с коэффициентом передачи (2), составленным из индуктивности синфазного дросселя L1 и тестовых сопротивлений R, соединенных параллельно, согласно схеме замещения (рис. 4).

Задача определения Uэф и Cэф в общем случае нетривиальна. Ее решение будет зависеть от примененных схемы источника питания, компонентов, конструкции и технологии. В простейшем случае Cэф определяется межобмоточной емкостью силового трансформатора, а Uэф — напряжением, приложенным между его обмотками. Очевидно, что чем больше индуктивность дросселя L1, тем сильнее подавляется синфазная помеха.

Схемы инверторов

Получившееся выпрямленное напряжение поступает на преобразователь (инвертор). Его выполняют на биполярных или полевых транзисторах, а также на IGBT-элементах, сочетающих свойства полевых и биполярных. В последние годы получили распространение мощные и недорогие полевые транзисторы с изолированным затвором (MOSFET). На таких элементах удобно строить ключевые схемы инверторов. В схемах импульсных блоков питания используются различные варианты включения MOSFET, но в основном применяются двухтактные схемы из-за простоты и возможности наращивания мощности без существенных переделок.

Пуш-пульная схема


Схема пуш-пульного преобразователя.

Пуш-пульный инвертор (push – толкать, pull – тянуть) — пример двухтактного преобразователя. Транзисторные ключи работают на первичную обмотку трансформатора, состоящую из двух полуобмоток I и II. Транзисторы поочередно открываются на заданный промежуток времени. Когда открыт верхний по схеме транзистор, ток течет через полуобмотку I (красная стрелка), когда второй – через полуобмотку II (зеленая). Чтобы избежать ситуации, когда оба ключа открыты (из-за конечной скорости работы транзисторов), схема управления формирует паузу, называемую Dead time.


Управление транзисторами с учетом Dead time.

Такая схема хорошо работает при низком напряжении питания (до +12 вольт). Минусом является наличие выбросов амплитудой, равной удвоенному напряжению питания. Это влечет за собой применение транзисторов, рассчитанных на вдвое большее напряжение.

Мостовая схема

От главного недостатка предыдущей схемы свободна двухтактная мостовая.


Двухтактная мостовая схема инвертора.

Здесь одновременно открывается пара транзисторов T1 и T4, потом Т2 и Т3 (сигнал управления ключами формируется с учетом Dead time). При этом первичная обмотка подключается к источнику питания то одной стороной, то другой. Амплитуда импульсов равна полному напряжению питания, и выбросы напряжения отсутствуют. К минусам относят применение четырех транзисторов вместо двух. Помимо увеличения габаритов БП это ведет к удвоенным потерям напряжения.

Полумостовая схема

На практике часто применяют полумостовую схему инвертора – в определенной мере компромисс между предыдущими двумя схемами.


Полумостовая схема.

В этом случае одна сторона обмотки коммутируется поочередно открывающимися транзисторами Т1 и Т2, а другая подключается к средней точке емкостного делителя С1, С2. Достоинства схемы:

  • в отличие от пушпульной отсутствуют выбросы напряжения;
  • в отличие от мостовой используются только два транзистора.

На другой чаше весов – обмотка трансформатора запитана лишь от половины напряжения питания.

Однотактные схемы

В схемотехнике преобразователей применяются и однотактные схемы – прямоходовые и обратноходовые. Их принципиальное отличие от двухтактных – трансформатор (точнее, его первичная обмотка) служит одновременно накопительной индуктивностью. В обратноходовых схемах энергия накапливается в первичной обмотке во время открытого состояния транзистора, а отдается в нагрузку через вторичную обмотку во время закрытого. В прямоходовых накопление энергии и отдача потребителю происходит одновременно.


Две фазы работы обратногоходового однотактного инвертора.

Контроллер импульсного ИП

Контроллер является основой инвертора, поэтому опишем его более подробно. В инверторе использован контроллер TL494 с установленной частотой работы такой же, как и в блоках питания ATX, то есть 30 кГц. Инвертор не имеет стабилизации выходного напряжения, поэтому контроллер работает с максимальным коэффициентом заполнения импульсов, который составляет 85%. Контроллер оснащен системой плавного пуска, состоящей из элементов C5 и R7. После запуска инвертора схема обеспечивает плавное увеличение коэффициента заполнения начиная с 0%, что устраняет всплеск зарядки выходных конденсаторов. TL494 может работать от 7 В, и такое напряжение, подающее буфер управляющего трансформатора Т2, вызывает генерацию напряжения на затворах порядка 3 В. Такие не полностью открытые транзисторы выдадут десятки вольт, что приведет к огромным потерям мощности и существует высокая вероятность превышения опасного предела. Чтобы предотвратить это, сделана защита от слишком высокого падения напряжения. Она состоит из резисторного делителя R4 – R5 и транзистора Q1. После того как напряжение падает до 14,1 В, Q1 разряжает конденсатор плавного пуска, тем самым уменьшая заполнение до 0%.

Другая функция контроллера – защитить инвертор от короткого замыкания. Информация о токе первичной обмотки получается контроллером через трансформатор тока Т3. Ток вторичной обмотки Т3 протекает через резистор R9, на котором падает небольшое напряжение. Информация о напряжении на R9 через потенциометр PR1 поступает на усилитель ошибки TL494 и сравнивается с напряжением резисторного делителя R1 и R2. Если контроллер распознает напряжение выше 1,6 В на потенциометре PR1, он закрывает транзисторы до того, как они пересекут опасный предел и фиксируется через D1 и R3. Силовые транзисторы остаются закрытыми до тех пор, пока инвертор не будет перезапущен. К сожалению, эта защита работает правильно только на линии +/- 35 В. Линия +/- 12 В намного слабее и в случае короткого замыкания может быть недостаточно тока, чтоб защита сработала.

Источник питания контроллера – безтрансформаторный с использованием сопротивления конденсатора. Два конденсатора C20 и C24 потребляют реактивную энергию от сети, и, следовательно, заставляя ток течь, они заряжают фильтрующий конденсатор C1 через выпрямитель D10-D13. Стабилитрон DZ1 защищает от слишком высокого напряжения на C1 и стабилизирует их при 18 В.

Силовой трансформатор

Силовой трансформатор работает на высоких частотах (до нескольких десятков килогерц), поэтому его можно выполнить на сердечнике не из трансформаторного железа, а на феррите. Также за счет повышенной частоты его размеры будут меньше, чем у сетевого, предназначенного для преобразования на частоте 50 Гц. Расчет импульсного трансформатора достаточно объемен. С ним можно разобраться для общего развития, а для практических целей лучше воспользоваться какой-либо программой, включая онлайн-сервисы.


Интерфейс программы Lite-CalcIT.

Популярностью пользуется программа Lite-CalcIT. Она может рассчитать трансформатор под имеющийся сердечник, а может подобрать оптимальный, исходя из введенных данных.

Снаббер

Чтобы скомпенсировать выбросы тока и напряжения, неизбежно возникающие при коммутации первичной обмотки трансформатора, применяются демпферные цепи, в англоязычной технической литературе называемые снабберами. Такие цепи могут устанавливаться по питанию (параллельно первичной обмотке трансформатора) либо отдельно на каждый ключ. Исполнение снабберов может быть разным, но наибольшее распространение получили демпферы в виде последовательной RC-цепочки (схема б на рисунке).


Различные схемы демпферов.

Обоснованной методики расчета снаббера не существует. Для этого надо учесть все паразитные индуктивности (обмотки, дорожек, конденсаторов) на множестве частот и для неизвестных волновых сопротивлений. Поэтому все существующие расчеты носят эмпирический характер.

Основным (и единственным) действующим элементом демпфера является конденсатор. Он «поглощает» импульсные выбросы. Резистор лишь ухудшает демпфирующие свойства, но ограничивает ток через конденсатор, который может достигнуть значительных величин, хотя и кратковременно. Такая схема более актуальна в тиристорных преобразователях.

Что такое снаббер или демпфер можете узнать посмотрев видео.

В схемах RCD-снабберов (в и г на рисунке) присутствуют диоды. Они могут быть полезны для ограничения импульсов обратной полярности в схемах с тиристорами и биполярными транзисторами. Если ключи собраны на полевых или IGBT-транзисторах, то смысла в установке вентилей нет – они дублируют диоды, имеющиеся внутри указанных транзисторов.

Емкость конденсатора выбирается в пределах 0,1–0,33 мкФ. В 90+ процентах случаев этого достаточно. Увеличение или уменьшение номинала применяется для ключей, работающих в нестандартных условиях (повышенная частота преобразования и т.п.)

Выпрямитель

Напряжение вторичной обмотки надо выпрямить. Для уровней до 12 вольт желательно использовать двухполупериодную схему со средней точкой.


Схема выпрямителя со средней точкой и прохождение тока по ней.

Преимущество данной схемы – ток проходит в каждую сторону только через один диод, и падение напряжения на вентилях, в отличие от классической мостовой схемы, в два раза меньше. Это может существенно сократить потребное число витков вторичной обмотки. Этой же цели служит применение диодов Шоттки и сборок из них.


Схема мостового выпрямителя и прохождение тока по ней.

Если выходное напряжение БП выше +12 вольт, то экономия 0,6 вольт становится несущественной, и можно выполнить выпрямитель по стандартной схеме и применить трансформатор без отвода.

В случае, если выход импульсного блока питания должен быть двухполярным, снова становится рациональным выполнение отвода от средней точки. В этом случае экономится сразу 4 диода и радиаторы для них – выигрыш в габаритах может быть существенным.


Двухполярный выпрямитель со средней точкой.

Примеры расчета

Расчет в одной точке

В качестве первого примера рассмотрим расчет уровня синфазной помехи для преобразователя, экспериментальные характеристики которого были показаны на рис. 2. В данном случае ставится скорее задача анализа — для проверки методики и сравнения с экспериментальными результатами.

В этом случае сначала была рассчитана синфазная составляющая сигнала помехи Uсинф (рис. 4), являвшаяся для данного режима прямоугольными импульсами напряжения с размахом (от пика до пика) dU1 (3), где Vin , Vo — входное и выходное напряжения преобразователя, w1, w2 — числа витков в первичной и вторичной обмотках силового трансформатора. Преобразователь — обратноходовый, работающий при данном Vin в режиме непрерывного тока и скважностью G = tи/T.

Затем сигнал Uсинф раскладывался на гармоники с помощью процедуры быстрого преобразования Фурье и умножался на коэффициент передачи фильтра Ks (2). После этого полученный сигнал восстанавливался во временной области с помощью обратного быстрого преобразования Фурье. Таким образом была получена синфазная составляющая в измеряемом сигнале.

После этого к полученному сигналу была прибавлена с соответствующим знаком дифференциальная составляющая (рис. 3), определенная как произведение тока во входном конденсаторе преобразователя на его ESR (эквивалентное последовательное сопротивление). Дифференциальная составляющая в этом случае определялась по (4), где I0 — начальное значение тока первичного ключа преобразователя, L — индуктивность намагничивания. Отметим, что начальное значение тока I0 в данном случае было близко к нулю, то есть блок был близок к граничному режиму. Также следует отметить: сложение сигналов на тестовых резисторах производилось без учета их постоянных составляющих, что позволило существенно упростить расчеты во временной области. В результате были получены идеализированные эпюры напряжений на измерительных резисторах (рис. 5), которые можно сравнить с экспериментальными осциллограммами (рис. 2):при 0 < t < GT,

где

при GT< t< T Uдиф = 0.

Рис. 5. Идеализированные эпюры напряжений на измерительных резисторах

Спектральный состав (до 7-й гармоники) этих временных характеристик представлен на рис. 6. Несмотря на некоторые отличия от характеристик, вычисленных по экспериментальным данным, можно утверждать, что в первом приближении расчет дает правильные результаты.

Рис. 6. Спектральный состав напряжений на измерительных резисторах

В заключение приведем значения всех параметров, использовавшихся при расчетах данного примера:

  • Vin = 60 В — входное напряжение преобразователя;
  • Vo = 24 В — выходное напряжение преобразователя;
  • Io = 1,25 А — выходной ток преобразователя;
  • w1 = 60, w2 = 27 — витки силового трансформатора;
  • T = 10 мкс — период коммутации;
  • G = 0,48 — коэффициент заполнения (скважность);
  • Cef = 62 пФ — межобмоточная емкость силового трансформатора;
  • Cy = 4,4 нФ — суммарная емкость Y-конденсаторов;
  • Ls = 3,8 мГн — индуктивность синфазного дросселя;
  • L = 40 нГн — индуктивность намагничивания силового трансформатора, приведенного к единичному витку;
  • ESR = 20 мОм — эквивалентное последовательное сопротивление входного конденсатора;
  • I0 = 0,06 А — значение тока первичного ключа преобразователя при t = 0;
  • R = 50 Ом — номинал тестового резистора.

Расчет при вариации параметров

Расчет в одной точке не всегда удовлетворяет разработчика, так как параметры преобразователя (например, входное напряжение) могут меняться. На основе знания о характере влияния тех или иных параметров разработчик может сделать окончательный выбор параметров фильтра синфазной помехи.

Для примера рассмотрим, как будут меняться гармонический состав дифференциальной и синфазной составляющих помехи, измеряемой на тестовом резисторе, в зависимости от питающего напряжения источника питания. Данный пример касается серии источников питания, рассчитанных на расширенный диапазон входного напряжения (85–342 Vdc) и выходную мощность 30 Вт. Для этой серии источников питания был сделан расчет зависимости амплитуд первых пяти гармоник, измеряемых на тестовом резисторе (рис. 1), от входного напряжения преобразователя. На рис. 7 показаны результаты этого расчета для наихудшего случая в ряду выходных напряжений (Vo = 5 В).

Рис. 7. Дифференциальная (слева) и синфазная (справа) составляющие помехи для первых пяти гармоник

Из рисунка видно, что в части дифференциальной составляющей блок не может удовлетворять требованиям ГОСТ [1] и необходимо введение фильтра дифференциальной помехи. В части синфазной помехи при использовании синфазного дросселя номиналом 8,2 мГн блоки попадают в Class A (промышленное применение). Выход из группы Class B происходит на второй гармонике при Vin > 200 В. Увеличение индуктивности синфазного дросселя на 20% позволит согласно расчету удовлетворить требованиям Class В (бытовое применение).

Фильтр

Выходное напряжение надо отфильтровать – оно содержит большое количество продуктов преобразования. Так как инвертор работает на достаточно большой частоте, то эффективными становятся фильтры, содержащие не только конденсаторы, но и малогабаритные дроссели относительно небольшой индуктивности.


Г- и П-образные LC-фильтры.

Для расчета элементов фильтра надо задаться коэффициентом пульсаций Кп. Он выбирается из предполагаемой нагрузки:

  • чувствительная аппаратура для радиоприема, предварительные каскады аудиоаппаратуры, микрофонные усилители – Кп=10-5..10-4;
  • усилители звуковой частоты – Кп=10-4..10-3;
  • приемная и звуковоспроизводящая аппаратура среднего и низкого класса – Кп=10-2..10-3.

Для Г-образного фильтра, устанавливаемого после двухполупериодного выпрямителя, действуют соотношения:

  • L*C=25000/(f2+Кп);
  • L/C=1000/R2н.

В этих формулах:

  • L – индуктивность дросселя в мкГн;
  • С – емкость конденсатора в мкФ;
  • f – частота преобразования в Гц;
  • – сопротивление нагрузки в Омах.

Для П-образного фильтра:

  • С1=С2=С;
  • L/C=1176/R2н.

Размерность величин та же, что и для предыдущего фильтра.

Схемы и изготовление импульсных блоков питания

Импульсные блоки питания собираются на различной элементной базе. Обычно для построения ИИП применяются специализированные микросхемы, специально разработанные для создания таких устройств. За исключением самых простых блоков.

Мощный импульсный блок на ir2153

Несложные блоки питания можно строить на микросхеме IR2153. Она представляет собой мощный интегральный драйвер с таймером, подобным NE555. Частота генерации задается внешними элементами. Входов для организации обратной связи микросхема не имеет, поэтому стабилизацию тока и напряжения методом ШИМ не получить.

Расположение выводов микросхемы IR2153.

Назначение выводов приведено в таблице.

ОбозначениеНазначениеНазначениеОбозначение
1VccПитание логики и драйверовПитание выходных ключейVb8
2RtРезистор частотозадающей цепиВыход верхнего драйвераHO7
3CtКонденсатор частотозадающей цепиВозврат питания верхнего драйвераVs6
4COMОбщийВыход нижнего драйвераLO5


Внутренняя схема IR2153.

Для наилучшего понимания работы и назначения выводов лучше изучить внутреннюю схему. Основной момент, на который надо обратить внимание – выходные ключи собраны по полумостовой схеме.

На этой микросхеме можно собрать простой блок питания.


Схема простого БП на IR2153.

Питается IR2153 от 220 вольт через гасящий резистор R1, выпрямитель на диоде VD3, фильтр на С4. Частота генерации задается элементами С5, R2 (с указанными на схеме номиналами получается около 47 кГц). Трансформатор можно посчитать программой. В авторском варианте использовался силовой трансформатор от компьютерного БП. Штатные обмотки удалены, первичка намотана в две жилы проводом в эмалевой изоляции диаметром 0,6 мм.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Схемы >Питание >Блоки питания >

Теги статьи:Добавить тег

Импульсный блок питания мощностью 200 Вт для УМЗЧ

Автор: Алексей Малышев Опубликовано 06.09.2012 Создано при помощи КотоРед. Участник Конкурса «Поздравь Кота по-человечески 2012!»

Здравствуй уважаемый Кот! С днем рождения тебя и всех благ, так сказать! А в качестве подарка прими такую очень полезную вещь, как источник питания для усилка.

ВНИМАНИЕ!

Часть элементов данного устройства находится под опасным для жизни напряжением сети! Некоторые элементы сохраняют опасный электрический заряд после отключения устройства от сети! Поэтому при монтаже, наладке и работе с устройством необходимо соблюдать требования электробезопасности. Повторяя устройство, вы действуете на свой страх и риск. Я, автор, НЕ несу никакой ответственности за любой моральный и материальный ущерб, вред имуществу, здоровью и жизни, причиненный в результате повторения, использования или невозможности использования данной конструкции.

Итак, начнем.

Споры о том, благо ли или зло импульсный источник питания для УМЗЧ (далее ИИП), выходят за рамки данной статьи. Лично я считаю, что правильно спроектированный, спаянный и налаженный ИИП ничуть не хуже (а по некоторым показателям даже лучше), чем классический БП с сетевым трансформатором.

В моем случае применение ИИП было необходимо потому, что я хотел засунуть свой усилок в плоский корпус.

Прежде чем разрабатывать данный ИИП, мной было изучено много готовых схем, имеющихся в сети и в литературе. Так, среди радиолюбителей очень популярны разные варианты схемы нестабилизированного ИИП на микросхеме IR2153. Преимущество этих схем только одно – простота. Что же касается надежности, то она никакая – сама ИМС не имеет функции защиты от перегрузки и мягкого старта для зарядки выходных электролитов, а добавление этих функций лишает ИИП его преимущества – простоты. Кроме того, реализация мягкого старта на данной ИМС крайне сомнительна – ширину импульсов она менять не позволяет, а методы, основанные на изменении частоты работы ИМС малоэффективны в «обычном» полумостовом ИИП и применимы в резонансных преобразователях. Долбать же электролиты и ключи огромными токами при включении блока мне как-то не очень хотелось.

Также рассматривалась возможность использования всем известной ИМС TL494. Однако при более глубоком ее изучении выяснилось, что для надежной работы вокруг этой ИМС придется повесить кучу всяких транзисторов, резисторов, конденсаторов и диодов. А это уже «не наш метод» :-)

В результате выбор пал на более современную и быструю микросхему под названием UC3825 (русский аналог К1156ЕУ2). Подробное описание данной ИМС можно найти в ее русском даташите [1] и в журнале «Радио» [2].

Для тех, кто поленился прочитать эти источники, скажу, что это быстродействующий ШИМ-контроллер, обладающий следующими возможностями:

  • Управление мощными МОП-транзисторами.
  • Работа в устройствах с обратной связью по напряжению и току.
  • Функционирование на частотах до 1МГц.
  • Задержка прохождения сигнала через схему 50нс.
  • Полумостовые выходы на ток до 1.5А.
  • Широкополосный усилитель ошибки.
  • Наличие ШИМ-защелки.
  • Ограничение тока в каждом периоде.
  • Плавный запуск. Ограничение величины максимальной длительности выходного импульса.
  • Защита от пониженного напряжения питания с гистерезисом.
  • Выключение схемы по внешнему сигналу.
  • Точный источник опорного напряжения (5.1В +/- 1%).
  • Корпус “DIP-16”

Ну прям то что надо! Рассмотрим теперь сам ИИП.

Технические характеристики

Входное напряжение, В…………………………………………….. 176…265;

Номинальная суммарная мощность нагрузки, Вт………………. 217,5;

Уровень сигнала управления, при котором БП включен……… Лог. 1 КМОП;

Уровень сигнала, при котором БП выключен…………………… <0,6 В или NC;

КПД при максимальной нагрузке, %……………………………… 80;

Габариты (ДхШхВ), мм………………………………………………..212х97х45

Выходные напряжения

Выходное напряжение, В Минимальный ток нагрузки, А Максимальный ток нагрузки, А
± 25 0,24 4
± 15 0 0,5
+ 5 (дежурное) 0 0,5

Принципиальная схема

Принципиальная схема ИИП показана на рисунке.

По архитектуре данный БП напоминает ИИП компьютеров формата ATX. Напряжение сети через предохранители FU1 и FU2 подается на сетевой фильтр и трансформатор дежурного питания. Использование двух предохранителей необходимо по соображениям безопасности – с одним общим предохранителем в случае КЗ в обмотке Т1 ток в ее цепи будет недостаточен для пережигания этого предохранителя, а мощность, выделяющаяся на вышедшем из строя трансформаторе достаточна для его возгорания.

Сетевой фильтр содержит двухобмоточный дроссель L1, X-конденсаторы С1, С2 и Y-конденсаторы С3, С4 и особенностей не имеет. Варистор RV1 защищает ИИП от высоковольтных выбросов в сети и при превышении напряжением сети максимально допустимого значения.

NTC-терморезистор RK1 ограничивает ток зарядки конденсатора С5 при включении ИИП в сеть.

Напряжение, выпрямленное мостом VD1 и сглаженное конденсатором С5, поступает на полумостовой инвертор, образованный МОП-транзисторами VT1, VT2 и конденсаторами емкостного делителя С6, С7. Раздельное построение входного фильтра и емкостного делителя позволяет облегчить режим работы оксидного конденсатора фильтра, имеющего сравнительно большое значение ЭПС. Резисторы R5, R6 выравнивают напряжение на конденсаторах делителя.

В диагональ полумоста включен силовой импульсный трансформатор Т4.

Выходные цепи ИИП содержат выпрямители на диодах VD5 – VD8, VD9 – VD12, дроссель групповой стабилизации (ДГС) L3 и П-образные фильтры С11 – C16, L4, L5 и C17 – С22, L6, L7. Керамические конденсаторы С13, С14, С17, С18 облегчают режим работы соответствующих электролитов. Резисторы R11 – R14 создают начальную нагрузку, необходимую для нормальной работы ИИП на холостом ходу.

Цепочки C8, R7; C9, R9; C10, R10 – демпфирующие. Они ограничивают выбросы ЭДС самоиндукции индуктивности рассеяния и снижают создаваемые ИИП помехи.

Схема управления на основной плате не помещалась, поэтому собрана в виде модуля А1 на дополнительной плате.

Как вы наверно уже догадались, ее основой является микросхема DA2 UC3825AN. Питается она от интегрального стабилизатора на КРЕНке DA1. Конденсаторы С1 и С7 – фильтр питания. Они, как гласит ДШ, должны быть расположены максимально близко к соответствующим выводам DA2. Конденсатор С5 и резистор R8 – частотозадающие. При указанных на схеме номиналах частота преобразования БП примерно равна 56 кГц (частота работы ИМС при этом в 2 раза выше – у нас ведь двухтактный ИИП). Конденсатор С4 задает длительность плавного старта, в данном случае – 78 мс. Конденсатор С2 фильтрует помехи на выходе источника опорного напряжения. Элементы С6, R9, R10 – цепь компенсации усилителя ошибки, а R4, R6 – делитель выходного напряжения БП, с которого снимается сигнал обратной связи.

Защита от перегрузки по току реализована на трансформаторе тока Т3. Сигнал с его вторичной обмотки выпрямляется выпрямителем на диодах VD3, VD4 (основной платы). Резистор R8 (на основной плате) является нагрузкой трансформатора тока. Сигнал с R8 через фильтрующую цепочку R7, C3 (в модуле А1) подается на вход ограничения тока DA2. В этом БП реализовано потактовое ограничение тока, т. е. микросхема не дает току через ключи нарасти до опасных значений. При достижении напряжения 1 В на выводе 9 микросхема ограничивает ширину импульсов. Если же в нагрузке произошло КЗ и ток ключей увеличился быстрее, чем DA2 успела среагировать на это, напряжение на выводе 9 превысит 1,4 В. Микросхема разряжает С4 и вырубается. Ток в цепи первичной обмотки пропадает и микросхема перезапускается. Таким образом, при КЗ в нагрузке ИИП переходит в «икающий» режим.

Управление затворами полевых транзисторов реализовано с помощью трансформатора Т2. В настоящее время получило распространение использование всяких бутстрепных высоковольтных драйверов типа IR2110 и т. п. Однако недостатком таких микросхем является то, что при выходе из строя какого-либо элемента выгорает ВСЯ высоковольтная часть БП и гальванически связанные с ней узлы (с чем мне и пришлось столкнуться в процессе экспериментов с данными микросхемами). Кроме того, данные ИМС не обеспечивают гальванической развязки схемы управления от высоковольтной части, что при выбранной архитектуре недопустимо. Про особенности управления затворами можно прочитать в [3], а в [4] можно скачать программу для расчета трансформатора управления.

Диоды Шотки VD1 – VD4 в модуле А1 защищают выходы драйвера микросхемы управления. Этому также способствует резистор R11.

На элементах VT1, VT2, R1 – R5 собрана схема выключения ИИП. Смысл всего этого – коротить С4, переводя тем самым микросхему управления в ждущий режим. Такие навороты нужны для гарантированного выключения ИИП даже если вход выключения вдруг повис в воздухе (сгорел проц в блоке управления, оборвался провод) или же вышел из строя источник дежурного питания. Иными словами, работа DA2 будет заблокирована до тех пор, пока на нее подано питание и при этом на вход управления ИИП не подан уровень лог. 1.

В ИИП имеется дежурный источник питания, который может использоваться для питания блока управления усилителем с функцией дистанционного включения.

Основа дежурного источника питания – трансформатор Т1. Применение «обычного», 50-герцового трансформатора повышает надежность устройства по сравнению с получившими широкое распространение в компьютерных БП импульсными обратноходовыми преобразователями, которые очень часто дохнут, создавая различные пиротехнические эффекты. Все-таки дежурка предполагает круглосуточную работу. Выпрямленное мостом VD2 и сглаженное конденсатором С23 напряжение (около 15 В) поступает модуль А1 и на Step-Down (понижающий) импульсный преобразователь на всем известной МС34063 (русский аналог К1156ЕУ5АР). Про эту микруху можно почитать в ДШ [5]. Кто-то скажет, а зачем такие сложности? Чем не угодила КРЕНка? Дело в том, что для нормальной работы UC3825 нужно минимум 12 В во всем допустимом диапазоне напряжений сети. При максимальном же напряжении в сети (мы ведь должны учесть всё) на выходе моста VD2 может быть аж 18-20 В. При этом если ваш микропроцессорный блок потребляет больше 50 мА, КРЕНка превратится в большую печку.

Супрессор VD14 защищает нагрузку дежурки (ваш мегасложный и супернавороченный микроконтроллерный блок управления) в случае выхода из строя источника дежурного питания (например, при пробое ключа МС34063 на ее выходе могут оказаться все 15 В).

Конструкция и детали

Поскольку я не люблю «соплей», а данное устройство любит правильную разводку, ИИП собран на односторонней печатной плате, рисунок которой приведен ниже: На основной плате установлены две перемычки из провода МГТФ — J1 со стороны деталей и J2 — со стороны дорожек. Как уже отмечалось выше, схема управления не поместилась на основной плате и поэтому собрана на вспомогательной плате: Применение SMD-элементов здесь вызвано не столько желанием сделать ультрамаленький модуль и усложнить задачу покупки элементов радиолюбителям из отдаленных от г. Москва регионов, сколько требованиями по разводке высокочастотных цепей вокруг UC3825. Благодаря использованию SMD-элементов удалось сделать все печатные проводники минимальной длины. Кто хочет, может попробовать красиво нарисовать платку под обычные детальки – у меня не получилось =))

Замечу также, что сильно отклоняться от приведенной разводки платы я настоятельно не рекомендую, т. к. БП может либо начать «гадить» в эфир, либо вообще не будет работать.

Теперь о деталях. Многие из них можно вытащить из неисправных или устаревших компьютерных БП. Основная плата рассчитана на установку резисторов С2-23 (МЛТ, ОМЛТ и т. п.), резисторы R10, R13 и R14 импортные (они тоньше МЛТ). Керамические конденсаторы – К10-17Б или аналогичные импортные, С25 должен быть обязательно из диэлектрика NPO или аналогичного, С6, С7 – пленочные К73-17.

Помехоподавляющие конденсаторы С1, С2 должны быть категории Х2, а С3 и С4 – Y2. К последним это требование обязательно, т. к. от них зависит электробезопасность ИИП. Конденсаторы С8 – С10 – керамические дисковые высоковольтные импортные. Можно поставить К15-5, но они больше, придется подправить плату.

Все оксидные конденсаторы должны быть с низким эквивалентным последовательным сопротивлением (Low ESR). Подойдут конденсаторы Jamicon серии WL. В качестве С5 подойдет Jamicon HS.

Дроссель L1 – от компового БП, выдранный из аналогичного места. На моем было написано “YX EE-25-02”. Дроссели L2, L4, L5 – стандартные на гантельках диаметром 9 мм, например, серии RLB0914. Дроссель L2 должен быть рассчитан на ток не менее 0,8А, L4, L5 – не менее 0,5 А. Дроссели L6 и L7 намотаны на кольцах T72 (К18,3х7,11х6,60) из распыленного железа марки -26 (желто-белого цвета). Я использовал уже готовые, поэтому сколько там витков не знаю, но при желании число витков можно рассчитать в программе «DrosselRing» [6]. Измеренная индуктивность моих дросселей 287 мкГн.

Транзисторы VT1, VT2 – n-канальные MOSFET с напряжением сток-исток не менее 500 В и током стока не менее 8 А. Следует выбирать транзисторы с минимальным сопротивлением открытого канала (Rds_on) и минимальным зарядом затвора.

Мост VD1 – любой на 800-1000 В, 6А, VD2 – любой >50В, 1А. В качестве VD3, VD4 подойдут КД522. Диоды VD5 – VD8 – Шоттки на напряжение не менее 80 В и ток не менее 1 А, VD9 – VD12 – быстродействующие (ultrafast) на напряжение не менее 200 В, ток 10…15 А и временем обратного восстановления не более 35 нс (в крайнем случае 75…50 нс). Будет совсем шикарно, если найдете Шоттки на такое напряжение. Диод VD13 – любой Шоттки 40 В, 1А.

В модуле А1 применены SMD-резисторы и конденсаторы типоразмера 0805. На позиции J1 устанавливается перемычка 0805. С5 должен быть обязательно из диэлектрика NPO или аналогичного, С6 – не хуже X7R. С1 – танталовый типа С или D – площадки на плате рассчитаны на любой из них. Транзисторы VT1, VT2 – любые n-p-n в корпусе SOT23. Диоды VD1 – VD4 – любые Шоттки на ток 3А в корпусе SMC. DA1 можно заменить на 7812.

XP3 – разъем с ATX-материнки.

Трансформатор Т1 типа ТП121-8, ТП131-8 . Подойдет любой с выходным напряжением под нагрузкой 15 В и мощностью 4,5 ВА. Намоточные данные других индуктивных элементов приведены ниже.

Трансформатор управления Т2

Обмотка № контакта (Н-К) Число витков Провод
I 4-2 16 МГТФ-0,08
II 10-9 16 МГТФ-0,08
III 6-7 16 МГТФ-0,08
Магнитопровод Ферритовое кольцо Т90 (К22,9х14,0х9,53) зеленого цвета, u=4600

Каждая из обмоток занимает 1 слой и равномерно распределена по кольцу. Сначала мотают обмотку I и покрывают ее слоем изоляции, например, фторопластовой ленты или лакоткани. Изоляция на этой обмотке определяет безопасность ИИП. Далее мотают обмотки II и III. Кольцо вертикально приклеивают к пластмассовой панельке с контактами, которую потом впаивают в плату. Следует отметить, что для нормальной работы этот трансформатор должен иметь минимальную индуктивность рассеяния, поэтому сердечник для него должен быть тороидальный и с максимальной магнитной проницаемостью. Я пробовал мотать этот транс на сердечнике Е20/10/6 из N67 – импульсы на затворах имели выбросы, которые приоткрывали второй транзистор полумоста:

Голубой график – импульсы на затворе VT2, желтый – напряжение на стоке VT2.

С тороидальным трансформатором, намотанным как написано выше, осциллограмма имеет такой вид: При монтаже трансформатора управления необходимо соблюдать фазировку обмоток! При неправильной фазировке при включении сгорят транзисторы полумоста!

Трансформатор тока Т3

Обмотка № контакта (Н-К) Число витков Провод
I 1 МГТФ-0,35
II 1-2-3 2х75 ПЭВ-2 0,23
Магнитопровод 2 кольца К12х8х6 из феррита М3000НМ

Обмотку II мотают в 2 провода, после намотки конец одной полуобмотки соединяют с началом другой и контактом 2. Обмотка I представляет собой отрезок провода, пропущенный через кольцо в виде буквы «П». Для повышения электрической и механической прочности изоляции на провод надета фторопластовая трубка.

Силовой импульсный трансформатор Т4

Обмотка № контакта (Н-К) Число витков Провод
I 4 – 2 18+18 3хПЭВ-2 0,41
II 9 – 7 – 8 6+6 ПЭВ-2 0,41
III 10 – 11 – 12 9+9 5хПЭВ-2 0,41
Магнитопровод EI 33,0/24,0/12,7/9,7 из феррита PC40 TDK

Трансформатор рассчитан в программе ExcellentIT(5000) [7]. Сердечник извлечен из компового БП. Сначала мотается первая половина обмотки I. Поверх нее укладывается слой изоляции (я использую лавсановую пленку от фоторезиста) и экран – незамкнутый виток медной ленты, обернутой скотчем. Экран соединен с выводом 2 трансформатора. Далее кладется несколько слоев пленки или лакоткани и мотается обмотка III жгутом из 10 проводов. Мотать надо виток к витку сжав жгут пальцами так, чтобы все 10 проводов расположились в один ряд – иначе не влезет. Конец одной полуобмотки (5 проводов) соединяется с началом другой и выводом 11 каркаса. Обмотка III покрывается одним слоем лавсановой пленки, поверх которой укладывается обмотка II аналогично III. После этого укладывается еще несколько слоев пленки или лакоткани, незамкнутый виток изолированной медной фольги, соединенный с выводом 2, слой пленки, и мотается вторая половина первичной обмотки.

Такая намотка трансформатора позволяет уменьшить индуктивность рассеяния в четыре раза.

На все выводы первичной обмотки надевают фторопластовые трубки.

Дроссель групповой стабилизации L3

Обмотка Число витков Провод
L3.1 24 ПЭВ-2 0,457
L3.2 24 ПЭВ-2 0,457
L3.3 40 ПЭВ-2 0,8
L3.4 40 ПЭВ-2 0,8
Магнитопровод Кольцо T106 (К26,9х14,5х11,1) из распыленного железа -26 (желто-белое)

ДГС рассчитан в программе «CalcGRI» [8].

Сначала мотаются обмотки L3.3 и L3.4 одновременно в 2 провода. Они займут 2 слоя. Поверх них аналогично мотаются обмотки L3.1 и L3.2 в один слой. При монтаже ДГС на плату необходимо соблюдать фазировку обмоток!

Все моточные изделия рекомендуется пропитать лаком PLASTIK-71.

Транзисторы VT1, VT2 установлены на алюминиевом ребристом радиаторе размерами 60х15х40 мм и площадью поверхности 124 см2. Диоды VD9 – VD12 установлены на аналогичном радиаторе размерами 83х15х40 мм и площадью 191 см2. С указанной площадью теплоотводов блок питания способен работать длительное время под постоянной нагрузкой не более 100 Вт! Если ИИП предполагается использовать не для усилителя, а для питания нагрузки с постоянной потребляемой мощностью до 200 Вт, площадь радиаторов необходимо увеличить или применить принудительное охлаждение!

Выглядит собранный ИИП так:

Сборка и настройка

Сначала на плату устанавливают все элементы, кроме VD1, VT1, VT2, T4, R7, C8, FU1. Включают ИИП в сеть и проверяют наличие напряжения +5 В на контакте 11 разъема XP3. После этого соединяют 1 и 11 контакты разъема XP3 и подключают двухлучевой осциллограф параллельно резисторам R3 и R4 (землю осцила на нижние концы резисторов, сигнальные щупы – на верхние. С установленными транзисторами и поданным силовым питанием так делать нельзя!!!). Осциллограмма должна иметь такой вид:

Если вдруг импульсы оказались у вас синфазными, значит вы накосячили при распайке обмоток трансформатора Т2. Поменяйте местами начало и конец нижней или верхней обмотки. Если этого не сделать, то при включении ИИП с ключами будет большой и красочный салют :-)

Если у вас нет двухлучевого осциллографа, можно по очереди проверить форму и наличие импульсов однолучевым, но при этом остается полагаться только на собственную внимательность при распайке трансформатора Т4.

Если у вас до сих пор ничего не взорвалось, не нагрелось, импульсы есть и правильно сфазированы, можно впаять все недостающие элементы и произвести первое включение. На всякий случай рекомендую это сделать через лампочку Ильича ватт на 150 (если сможете купить :D). По-хорошему, чтобы ничего не сжечь, ее конечно надо включать в разрыв цепи между плюсом С5 и полумостом. Но так как у нас печатная плата, это сделать затруднительно. При включении в разрыв сетевого провода от нее толку мало, но все-таки как-то спокойнее)). Включаем ИИП на холостом ходу и замеряем выходные напряжения. Они должны быть приблизительно равны номинальным.

Подключаем между выходами «+25 В» и «-25 В» нагрузку 100 Вт. Для этих целей удобно использовать обычный чайник 220 В 2,2 кВт, предварительно наполнив его водой. Один чайник нагружает ИИП примерно на 90 – 100 Вт. Снова замеряем выходные напряжения. Если они значительно отличаются от номинальных, вгоняем их в допустимые пределы подборкой резисторов R4 и R6 в модуле А1.

Если ИИП работает неустойчиво – выходное напряжение колеблется с некоторой частотой, необходимо подобрать элементы компенсации обратной связи C6, R9, R10. Увеличение емкости С10 увеличивает инерционность ИИП и повышает стабильность, однако чрезмерное увеличение его емкости приведет к замедлению ОС и возрастанию пульсаций выходного напряжения. Теперь можно проверить ИИП на максимальной нагрузке. Если ИИП под нагрузкой запускается неустойчиво, либо переходит в «икающий» режим, можно попробовать увеличить емкость конденсатора С3, однако слишком увлекаться этим не рекомендую – это приведет к снижению быстродействия защиты по току и возрастанию ударных перегрузок элементов ИИП при КЗ. Также можно попробовать уменьшить номинал R8. При указанном на схеме значении защита срабатывает при амплитуде тока первичной обмотки Т4 около 5 А. К слову скажу, что максимально допустимый ток стока примененных транзисторов – 8 А.

Если и теперь ничего не взорвалось, все транзисторы и конденсаторы остались на своих местах, блок питания удовлетворяет приведенным в начале статьи характеристикам, а чайник согрелся, подключаем к БП усилок и наслаждаемся музыкой, попивая свежеприготовленный чаек :-)

PS: Я испытал свой ИИП совместно с усилителем на LM3886. Никакого фона в колонках я не заметил (что не скажешь о комповых колонках с «классическим» трансформатором). Звук очень понравился.

Удачной сборки!

Литература

  1. Схемы ШИМ-контроллеров К1156ЕУ2, К1156ЕУ3 https://www.sitsemi.ru/kat/1156eu23.pdf
  2. Широтно-импульсные контроллеры серий КР1156ЕУ2 и КР1156ЕУ3. – Радио, 2003, №6, с. 47 – 50.
  3. Разработка и применение высокоскоростных схем управления силовыми полевыми транзисторами https://valvolodin.narod.ru/articles/FETsCntr.pdf
  4. Расчет и применение GDT https://bsvi.ru/raschet-i-primenenie-gdt/
  5. DC-DC конвертер К1156ЕУ5 https://www.sitsemi.ru/kat/1156eu5c.pdf
  6. Программа «DrosselRing» https://radiokot.ru/forum/download/file.php?id=106660
  7. Программа «ExcellentIT(5000)» https://radiokot.ru/forum/download/file.php?id=106659
  8. Программа «CalcGRI» https://radiokot.ru/forum/download/file.php?id=106664

Файлы:

Плата в формате Sprint Layout 5.0

Все вопросы в Форум.

Как вам эта статья? Заработало ли это устройство у вас?
6400
7
01
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]