Скин-эффект в асинхронном двигателе с короткозамкнутым ротором

Каждый опытный электротехник знает, что распределение плотности тока в проводнике нелинейно. Чем ближе к центральной оси, тем меньше амплитуда сигнала. При высокой частоте для корректного расчета вполне достаточно учитывать прохождение волн через определенный поверхностный слой. Это явление, скин эффект, способно выполнять полезные функции. Для успешного применения на практике, кроме общей теории, нужно изучить методику вычислений.


На основе скин эффекта создают экономичные системы обогрева трубопроводов

Объяснение поверхностного эффекта

Следует подчеркнуть одинаковую плотность тока при подключении проводника к источнику питания с постоянным напряжением. Однако ситуация изменяется при прохождении волнового сигнала.


Распределение плотности тока в проводнике

Физическая картина возникновения

Для объяснения причин явления можно использовать вторую часть пояснительной картинки выше. В графической форме показаны силовые воздействия, которые образуются переменным полем. Электрическая составляющая (Е) направлена противоположно току (I), что объясняет возникающее сопротивление и соответствующее уменьшение амплитуды. По мере приближения к поверхности будет проявляться обратный эффект. Он вызван совпадением векторов напряженностей.

Уравнение, описывающее скин-эффект

Для выражения амплитуды через плотность тока берут определяющие соотношения из классических уравнений закона Ома и формул Максвелла. Дифференциалом по заданному временному интервалу можно вычислить значения магнитной и электрической компонент поля. В упрощенном виде рассматривают бесконечный проводящий образец, созданный из однородного материала.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Формула определения частоты среза диаметра проводника

Эффект Холла

Для практических вычислений отдельными незначительными факторами пренебрегают. Например, чтобы определить частоту среза (Fср), цепь радиотехнического устройства рассчитывают по диаметру (D) соответствующего проводника. В формулу добавляют важнейшую характеристику определенного материала – удельное сопротивление (Rу) или проводимость (Sу). Зависимость отмеченных параметров показывает следующее выражение:

Fср = 4/ (π*μ*Sу*D2),

где μ – постоянная величина (μ = 4* Sу*10-7 Генри на метр).

Толщина скин-слоя

Конденсатор в цепи переменного тока

Из рассмотренного в предыдущем разделе определения понятна обратная зависимость плотности тока от частоты сигнала. Следующая таблица демонстрирует наглядно «активный» слой медного проводника. При многократном уменьшении энергетического потока в глубине на определенном уровне нецелесообразно применение толстых линий электропередач.

ПараметрЗначения
Частота сигнала, Гц506010 000100 0001 000 000
Толщина скин слоя, мм9,348,530,660,210,067

В первых двух столбцах приведены значения для стандартных сетей переменного тока. Эти данные демонстрируют, что сравнительно незначительное изменение частоты (10 Гц) делает бесполезным 1,62 мм диаметра проводника (медь). Нетрудно вычислить значительную экономию при создании длинной линии после соответствующей оптимизации параметров сигнала. Следует не забывать, что каждый металл отличается глубиной эффективного слоя. Какой выбрать вариант, будет понятно после тщательного изучения целевого назначения конструкции.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Аномальный скин-эффект

Внимательное изучение явления позволяет сделать несколько важных выводов. Как показано на конкретных примерах, скин слой отличается небольшой глубиной. Однако соответствующее расстояние намного меньше средних значений свободного пробега заряженных частиц. Следует не забывать, что на соответствующее перемещение нужно затратить определенную энергию. Преодоление электрического сопротивления материала сопровождается нагревом.

Если снижать температуру, проводимость увеличится. Одновременно станет больше свободный пробег, и уменьшится толщина рассматриваемой части проводника. При определенном уровне стандартный механизм волновых взаимодействий станет ничтожным. Аномальный скин эффект – это изменение размеров слоя, в котором обеспечивается достаточно высокая для практического использования плотность тока.

Подписка на рассылку

Существование современного мира невозможно представить без электрического тока. Он обеспечивает функционирование огромного множества устройств и электроприборов, а также целых систем. Понятие «электрический ток» помогает провести аналогию между этим явлением и протеканием жидкости, что придает данному термину некоторую наглядность. Электрический ток протекает благодаря тому, что электромагнитное поле движется вдоль проводящей среды со скоростью, примерно равной скорости света. Данное движение идет в направлении от большего потенциала к меньшему, то есть от «+» к «-». Одновременно с этим носители зарядов перемещаются с чуть медленнее и в разных направлениях (в зависимости от материала).

Какие бывают носители зарядов?

Существуют два вида носителей зарядов – отрицательные и положительные. Заряд со знаком «минус» может иметь ионы и электроны, а положительный заряд в основном имеют только ионы. Отрицательные заряды перемещаются в направлении большему потенциала, а положительные – наоборот. Это движение и приводит к появлению электрического тока. Данная неопределенность устранена в общепринятом правиле, которое гласит, что ток всегда протекает от «+» к «-», вне зависимости от типа зарядов.

Как заряды движутся в металлах?

Почти все металлы, применяемые в электротехнике, не содержат ионов, поскольку пребывают в твердом состоянии. Для них свойственна проводимость электронного типа. Это означает, что свободные электроны, выступающие в роли носителей зарядов, движутся в направлении, обратном току.

Металлы обладают относительно низким электрическим сопротивлением. Если разность потенциалов отсутствует, электрическое поле срывает электроны со своих орбит. По этой причине при небольшой разности потенциалов возникает значимое количество носителей зарядов.

Как заряды движутся в полупроводниках?

Полупроводники имеют гораздо более низкую проводимость, чем металлы (в условиях комнатной температуры). Существуют полупроводники двух типов – n и p. Полупроводники первого типа содержат избыток электронов. Когда они переходят к p-типу, возникает их недостаток. Остальные электроны без особых трудностей перемещаются по своим возможным местам внутри атома. Это равноценно движению зарядов со знаком «+». Поскольку в полупроводниках электроны слабо связаны с атомами, при повышении температуры изменяется количество несвязанных электронов, и проводимость полупроводника быстро возрастает. Вывод: в полупроводниках заряды могут двигаться в направлении протекания тока или же в противоположном направлении (p- и n-тип соответственно).

Как заряды движутся в газах и жидкостях?

В жидкостях и газах носителями зарядов выступают ионы, которые бывают отрицательными (так называемые катионы) и положительными (анионы). Если количество катионов больше, они движутся обратно направлению тока. Если же преобладают анионы, их движение совпадает с направлением тока.

Источник

Применение

Поверхностный эффект позволяет обеспечить локальный нагрев части проводника при пропускании переменного тока. Этот принцип используют, чтобы обогреть трубопровод в зимний период. Правильное применение технологии подразумевает следующие преимущества:

  • отсутствие сопроводительных контрольных и функциональных устройств;
  • практически неограниченная длина трассы;
  • возможность безопасного применения высоких температур.

Частотное распределение плотности токов используют для передачи информационных сигналов по силовым линиям электропередач. При достаточном уменьшении длины волны близость центральной части проводника не будет помехой. Модулированная СВЧ составляющая проходит в поверхностном слое. Для создания пакетов данных и расшифровки применяют специальные кодирующие (декодирующие) устройства.

К сведению. Подобные механизмы используют в нефтяной отрасли для оценки продуктивности скважины. Скин фактор определяет сопротивление перемещению жидкости в близкой технологическому отверстию области пласта. По этому параметру делают оценку реального объема добычи, по сравнению с идеальными условиями.

Влияние кабелей на параметры систем «усилитель-АС» и «микрофон-микшер»

В существенном влиянии кабелей на звук уверено подавляющее большинство аудиофилов. На эту тему написано немало статей как сторонников, так и противников данной теории, впрочем, мне не встретилась ни одна статья, содержащая реальные технические расчёты, которые доказывали бы ту или иную точку зрения. В текстах обычно приводятся собственные домыслы, которые порой далеки от реальности. Я использовал технические знания и расчёты, чтобы разобраться в данной теме. Чаще всего, помимо активного сопротивления проводника, аудиофилы упоминают три фактора, якобы влияющие на конечные параметры электрической цепи:

  • ёмкостное сопротивление (поскольку кабель состоит из пары проводников);
  • индуктивное сопротивление;
  • скин-эффект.

Рассмотрим первые два фактора в совокупности, поскольку они имеют очень тесную связь. Дело в том, что существует эквивалентная схема бесконечно малого отрезка длинной линии электропередач, которая представляет собой четырёхполюсник, содержащий погонные сопротивление, ёмкость, индуктивность и проводимость (Рисунок 1). Таким образом, любая длинная линия представляет собой совокупность данных четырёхполюсников, подключённых последовательно. Рисунок 1 – Эквивалентная схема бесконечно маленького отрезка длинной линии
Однако, здесь следует учитывать, что речь идёт именно о длинной линии. По определению, длинная линия представляет собой регулярную линию электропередач, длина которой во много раз превышает длину волны колебаний, распространяющихся в ней, а расстояние между проводниками и поперечный размер проводников во много раз меньше длины волны, т.е. выполняются соотношения где λ

– длина волны,
L
– длина линии,
a
– поперечное сечение проводника,
b
– расстояние между проводниками. Для верхней граничной частоты
ν = 20000
Гц слышимого диапазона длина волны
λ = c⁄ν
, где
c
– скорость света, будет равна 300000000/20000=15000 м, или 15 км. Для частоты в 50 Гц длина волны будет достигать шести тысяч километров. Естественно, такие длины акустических кабелей не используются, и поэтому модель длинной линии для них явно не подходит. Для линий, длина которых много меньше или соизмерима с длиной волны колебаний, существует эквивалентная схема короткой линии (Рисунок 2).


Рисунок 2 – Эквивалентная схема бесконечно маленького отрезка короткой линии

Как видно из рисунка, здесь уже не учитываются проводимость и индуктивность линии, поскольку их значения пренебрежимо малы (для короткой линии). Значит, второй фактор рассматривать смысла нет. Остаётся только ёмкость. Рассчитаем теперь входное и выходное сопротивление нашего пассивного четырёхполюсника и посмотрим его передаточную характеристику. Входное сопротивление для первого контура будет равно: Выходное сопротивления для второго контура: Передаточная характеристика по напряжению: Модуль передаточной характеристики: Теперь возьмём для расчёта один метр какого-нибудь реального кабеля. Я зашёл на сайт audiomania.ru и нашел дешевый микрофонный кабель Onetech Rapid Two INT0107. Один проводник такого кабеля имеет сечение 0,21 кв.мм, что примерно соответствует калибру AWG 24, согласно американскому стандарту. Из книги Fundamentals of Telecommunications воспользуемся таблицей, в которой указаны погонные сопротивления и ёмкости (Рисунок 3).


Рисунок 3 – Таблица параметров кабелей (для 1 кГц)

Для AWG 24 C=40

нФ⁄км
=40
пФ⁄м;
R=170
Ом⁄км
=0,17
Ом⁄м,
ν=1000
Гц. Подставим эти значения в формулу (4): Я специально оставил более 15 знаков после запятой, чтобы показать, насколько мизерно изменение напряжения при прохождении через четырёхполюсник. К слову, трудно даже сыскать прибор, который покажет такую точность. Посмотрим теперь граничное значение спектра частот, воспринимаемых человеческим ухом (
ν_н=20
Гц,
ν_в=20000
Гц):


Скептики скажут: «Это же расчёт всего лишь для одного метра кабеля». Что ж, посмотрим, что произойдёт с модулем передаточной характеристики по напряжению для, скажем, пяти метров кабеля (для 1 кГц). Изменения для пяти метров кабеля всё также пренебрежимо малы, чтобы их учитывать.

О скин-эффекте

По определению, скин-эффект (или поверхностный эффект) – это эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. Именно за счёт неравномерного распределения тока эффективное сечение проводника уменьшается, а, следовательно, увеличивается сопротивление. Такое представление о скин-эффекте заставляет аудиофилов покупать посеребрённые провода, которые, естественно, гораздо дороже обычных (с помощью тонкого слоя серебра действительно можно бороться со скин-эффектом для высоких частот, за счёт меньшего удельного сопротивления серебра). Но имеет ли это смысл? Вывод формулы, описывающей скин-эффект, исходит из уравнения Максвелла. Расписывать его не имеет смысла, всю информацию можно найти в учебниках для вузов (например, в учебнике Сивухина). Вместо вывода, воспользуемся упрощённой формулой для расчёта толщины скин-слоя (слой в проводнике, где сосредоточен практически весь ток): где ρ
– удельное сопротивление,
μ_m
– относительная магнитная проницаемость,
f
– частота. Для меди:
ρ=0.018
(Ом∙кв.мм)/м;
μ_m=0.999994
при частоте
f=20000
Гц: Посчитаем площадь сечения, в котором у нас наблюдается скин-эффект: Таким образом, для любого калибра провода, который имеет площадь сечения меньшую, чем 2.95 кв.мм, скин-эффект вообще не оказывает никакого влияния.

О коэффициенте демпфирования

Многие любители хорошего звука часто ссылаются на коэффициент демпфирования (или демпфинг-фактор), якобы описанный в немецком стандарте DIN 45500 и определяющий его, как отношение сопротивления нагрузки к выходному сопротивлению усилителя. Считается, что система попадает под определение Hi-Fi, если её коэффициент демпфирования составляет более 20. При этом, коэффициент якобы учитывает и сопротивление кабелей (оно суммируется с выходным сопротивлением усилителя), причем только его активную часть. Если воспользоваться данным коэффициентом, то получается, что сопротивление проводников не только оказывает колоссальное влияние на АС, но и является чуть ли не одним из самых важных параметров АС. Для примера, примем выходное сопротивление усилителя равным 0.01 Ом, тогда, при подключении динамика в 4 Ом кабелем калибра AWG 24 длиной 1 метр, получим: Коэффициент демпфирования едва ли перевалился за 20, и это только для одного метра кабеля! В чём же дело и кому верить? Честно говоря, я не читал стандарт DIN 45500, поскольку он написан на немецком языке, коим я не владею. Однако, в российских национальных стандартах существует два аналога данному DIN 45500 для АС и усилителей – ГОСТ 23262-88 и ГОСТ 24388-88 соответственно. Ни в одном из них «коэффициент демпфирования» ни разу не упоминается, как и в других ГОСТах, ссылки на которые в них присутствуют. Этот термин также не встречается и в русскоязычной литературе. В англоязычных ресурсах информация об этом параметре есть, но довольно скудная, без ссылок на авторитетные источники. Исходя из исследования, проведённого в начале статьи, я практически уверен, что «коэффициент демпфирования» – не более чем миф, придуманный маркетологами для повышения продаж толстенных и посеребрённых кабелей, стоимостью сотни и даже тысячи долларов. Они попытались подогнать согласование напряжений в акустических системах под некий параметр, однако коэффициент демпфирования не характеризует АС ни количественно, ни качественно.

О согласовании сопротивлений и «гитарных» кабелях

Хотя изначально в статье рассматривалось влияние именно на акустическую систему, в комментариях всплыла тема гитарных комбоусилителей и кабелей для подключения электрогитар к ним. Следует отметить, что данная тема требует несколько другого подхода к рассмотрению. И вот почему. Любая система «усилитель-АС» или «микрофон-микшерский пульт» требует согласования сопротивлений по напряжению
: сопротивление нагрузки должно быть много больше сопротивления выхода источника (иначе говоря, внутреннее сопротивление источника сигнала). В этом случае напряжение, которое является носителем сигнала, пройдет от источника к нагрузке с минимальными потерями. Именно к данному типу согласования, в первую очередь, относится статья.

С гитарными комбоусилителями история немного другая. Здесь, из-за особенностей звукоснимателя электрогитары, используется согласование по мощности. В этом случае сопротивление нагрузки должно быть комплексно сопряжено с внутренним сопротивлением источника (или быть близким к данному состоянию).

При любом типе согласования для любого источника сигнала кабель является простейшим ФНЧ-фильтром. Формула для определения частоты среза выглядит следующим образом: Это можно считать дополнительным ограничением, которое накладывается на всю систему в целом. В случае с согласованием по напряжению, частота среза будет очень высокой: много больше верхней граничной частоты звукового спектра. Выходное же сопротивление электрогитары может достигать сотен тысяч кОм (более точного интервала в технической литературе не нашёл), здесь частота среза может быть в пределах звукового спектра. Поскольку внутреннее сопротивление источника очень большое, сопротивлением кабеля для данной формулы можно пренебречь, то есть важнейшим параметром для такого «гитарного» кабеля является погонная ёмкость. При этом следует отметить, что никакие иные явления кабелем в систему не вносятся, то есть до частоты среза передаточная характеристика, рассчитанная выше, справедлива. Хочу заметить, что ёмкость кабеля из медных проводников определяется исключительно геометрией

, то есть взаимным расположением проводников и их линейными размерами (материал изоляции, т.е. диэлектрика, не учитываем, поскольку разброс значений диэлектрической проницаемости используемых материалов относительно небольшой). Это значит, что никаких особых технологий изготовления кабелей, повышающих стоимость до десятков тысяч рублей и более, не существует.

С выхода комбоусилителя сопротивление согласуется с сопротивлением пульта по напряжению при помощи DI Box. Подключение электрогитары без DI Box приведёт к сильному искажению сигнала.

Заключение

Расчёты, приведённые в данной статье, наглядно показывают, что влияние кабелей на передачу сигналов в спектре частот, слышимых человеческим ухом, для систем «усилитель-АС» и «микрофон-микшер» пренебрежимо мало. Для данных систем кабели бывают двух типов: работающие и неработающие. При этом следует уделить особое внимание погонной ёмкости для кабелей, подключающих электрогитары к комбоусилителям, поскольку от неё зависит частота среза система «гитара-комбик». Однако несомненно одно: кабели не вносят никакого «окраса», «настроения» и прочих вещей, о которой так любят говорить продавцы или аудиофилы. Смею заметить, что я ни в коем случае не могу никак повлиять на вашу свободу выбора — вы можете покупать любые кабели по любой цене и по любой причине. Я написал всё это только в качестве акта сопротивления распространения технической ереси, которая слишком часто стала вноситься маркетологами ради зарабатывания лёгких денег.
Список использованных источников 1. Л.А. Бессонов. Теоретические основы электротехники. Электрические цепи. — М.: Высшая школа, 1996. — 638 с. 2. Д.В. Сивухин. Общий курс физики. Электричество. т. III — М.: Наука, 1977. — 704 с. 3. А.Н. Матвеев. Электричество и магнетизм. — М.: Высшая школа, 1983. — 463 с. 4. А.В. Максимычев. Физические методы исследования. Конспект лекций. Часть 2. Сигналы в длинных линиях. — М.: МФТИ, 2003. — 43 с. 5. ГОСТ 23262-88. Системы акустические бытовые. Общие технические условия. 6. ГОСТ 24388-88. Усилители сигналов звуковой частоты бытовые. Общие технические условия. 7. ГОСТ 16122-87. Громкоговорители. Методы измерения электроакустических параметров. 8. Roger L. Freeman. Fundamentals of Telecommunications. — John Wiley & Sons, Inc., 1999. — 676 p. 9. Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. — М. — Л.: Энергия, 1965. — 892 с. 10. Джонс М. Х. Электроника — практический курс. — М.: Техносфера, 2006. — 512 с.

Учёт эффекта в технике и борьба с ним

Это явление оказывает заметное влияние по мере увеличения частоты сигнала. Следует учитывать скин эффект при проектировании схем с переменными (импульсными) токами. В частности, делают коррекцию расчета катушки фильтра, колебательного контура, трансформатора.

Типовые способы решения обозначенных проблем:

  • уменьшение толщины проводника;
  • создание полых конструкций;
  • образование поверхностного слоя из металла с лучшей проводимостью;
  • устранение неровностей;
  • плетение из нескольких изолированных жил.

К сведению. Радикальное устранение вредных явлений организуют с помощью передачи электроэнергии постоянным током.

Способы подавления скин эффекта

Перечисленные методики имеют особое значение при работе с высокочастотными радиосигналами. В частности, для улучшения проводимости поверхностный слой создают из серебра, платины, других благородных металлов. Следующие рекомендации применяют на практике при создании качественной аудио аппаратуры:

  • для пропускания сигналов используют тонкие (0,25-0,35 мм) жилы;
  • плетением кабеля устраняют значительные искажения силовых линий магнитного поля;
  • надежной изоляцией предотвращают окисление меди;
  • проверяют наличие поблизости других линий, способных оказывать вредное взаимное влияние.


Оптоволоконная линия связи

При переходе в СВЧ диапазон сигналы передают по волноводам. Устраняют возможные негативные проявления с помощью передачи данных сигналами в оптическом диапазоне.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]