Подключение проводника к источнику питания провоцирует взаимодействие носителей зарядов с молекулярной структурой соответствующего вещества. При определенных условиях этот процесс сопровождается нагревом. Тепловое действие тока используют при создании ТЭНов, предохранителей, других устройств. Примеры расчетов и другие полезные сведения из этой публикации помогут решать различные практические задачи.
Простой эксперимент демонстрирует, как происходит повышение температуры проводника
Тепловое действие тока в твердых телах
Это самое первое и очевидное для нас действие тока.
Тепловое действие тока проявляется в том, что среда, в которой он протекает, нагревается.
Например, это действие мы используем в таких повседневных приборах, как утюг, электрочайник, кофеварка. В обычных лампах накаливания тоже наблюдается тепловое действие тока (рисунок 1).
Рисунок 1. Тепловое действие тока в лампе накаливания
В таких лампах присутствует тонкая вольфрамовая проволока, которая при протекании по ней тока нагревается настолько, что раскаляется добела. Если мы поднесем руку к такой лампе, то почувствуем тепло. Это и есть наглядное тепловое действие тока.
Конечно, здесь еще присутствует факт того, что эта спираль не только дает тепло, но еще и светится. О световом действии тока мы поговорим чуть ниже.
Как можно наблюдать на опыте тепловое действие тока? Давайте проведем такой опыт, чтобы убедиться в наличии именно теплового действии тока.
Подключим к источнику тока железную или никелевую проволоку, как показано на рисунке 2.
Рисунок 2. Тепловое действие тока
После замыкания ключа в цепи появится ток. Проволока ощутимо нагреется. При этом она немного удлинится и провиснет. Заметьте, что до пропускания через нее тока она была плотно натянута (на рисунке исходное положение обозначено пунктирной линией).
Тепловое действие тока в жидкостях и газах
Проволока в опыте выше представляла собой твердое тело. А будет ли проявляться тепловое действие тока в жидкостях или газах? Будет!
Для этого проведем следующий опыт. Возьмем сосуд с обычной водой и опустим туда две металлические пластины (рисунок 3). Присоединим их с помощью проводов к источнику тока. Теперь эти пластины будут являться электродами.
Опустим в воду термометр и зафиксируем температуру. Замкнем ключ, и по цепи пойдет электрический ток.
Рисунок 3. Тепловое действие тока в жидкости
Через 10-15 секунд вы уже увидите, что столбик термометра пополз вверх. Температура воды стала увеличиваться.
Как это можно объяснить? Электрическое поле заставляет электроны двигаться в определенном направлении. Их скорость увеличивается. Значит, увеличивается и их кинетическая энергия ($E_к = \frac{m \upsilon^2}{2}$).
При своем движении эти электроны будут неизбежно сталкиваться с другими частицами вещества (в нашем случае — воды). При столкновении они будут передавать часть своей энергии этим частицам. Значит, при прохождении тока через воду ее частицы получают какую-то дополнительную энергию. Общая внутренняя энергии воды увеличивается. А вы знаете, что именно это и приводит к повышению температуры.
Опыт, подтверждающий тепловое действие тока в воздухе, мы проделывать не будем, по причине его большой сложности. В общем, явлений, где проявляется тепловое действие тока в воздухе очень мало. Но, например, молния — наглядное природное явление, где тепловое действие тока тоже заметно.
Можно ли использовать электродвигатель как генератор
Содержание
- Законы, позволяющие использовать асинхронный электродвигатель как генератор
- Способы переделки электродвигателя в генератор
- Торможение реактивной нагрузкой
- Самовозбуждение электродвигателя
- Что нужно знать, чтобы электродвигатель работал как генератор
- Насколько эффективно использование электродвигателя в качестве генератора
Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.
Законы, позволяющие использовать асинхронный электродвигатель как генератор
В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.
В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.
Способы переделки электродвигателя в генератор
Есть два способа «регулировки» магнитного поля статора.
Торможение реактивной нагрузкой
Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.
Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.
Самовозбуждение электродвигателя
Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.
Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.
Что нужно знать, чтобы электродвигатель работал как генератор
При переделке двигателя в генератор следует учитывать следующие технические детали:
- Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
- В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
- Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.
Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.
Насколько эффективно использование электродвигателя в качестве генератора
У использования электродвигателя как генератора есть свои «плюсы»:
- Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
- Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
- Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
- Частота вырабатываемого тока часто нестабильна.
- Такой генератор не может обеспечить промышленную частоту тока.
Химическое действие тока в жидкостях
Как можно на опыте пронаблюдать химическое действие тока? Вернемся к предыдущему опыту и более внимательно приглядимся к электродам, опущенным в воду (рисунок 4).
Рисунок 4. Химическое действие тока в воде
Мы увидим, что даже в обычной воде вокруг электродов образуются мелкие пузырьки газа. Они не могут возникнуть сами по себе. Значит, происходит какая-то химическая реакция.
Обратите внимание, что здесь речь идет не о кипении, где мы ранее наблюдали образование пузырьков. Сами электроды еле теплые, мы можем спокойно потрогать их руками. Температура воды тоже далека от ее температуры кипения. Получается, что наличие этих пузырьков — это результат химических реакций, происходящих в воде, при пропускании через нее электрического тока.
Проведем еще один опыт, который более наглядно продемонстрирует нам химическое действие тока.
Заменим воду в сосуде из прошлого опыта на раствор медного купороса $CuSO_4$. Он имеет голубо-зеленоватый цвет. Металлические электроды заменим угольными (рисунок 5).
Рисунок 5. Химическое действие тока в растворе медного купороса
Замкнем ключ. По цепи пойдет ток. А теперь внимательно взглянем на электрод, соединенный с отрицательным полюсом источника тока. На нем образовался красноватый налет.
Что это? Откуда он взялся? Это чистая медь $Cu$. Под действием тока она выделилась из сложного соединения и отложилась на отрицательном электроде.
Химическое действие тока проявляется в том, что при его прохождении через растворы солей, кислот, щелочей на электродах выделяется чистое вещество.
Это действие тока активно применяется на практике в электрометаллургии для получении чистых металлов без каких-либо примесей (рисунок 6).
Рисунок 6. Детальная иллюстрация химического действия тока
Эту методику применяют для нанесения на поверхность различных предметов тонким слоем никеля, серебра, золота. Это придает предметам красивый эстетический вид и защищает их от преждевременного ржавления.
Химическое действие тока в твердых телах и газах
В твердых телах атомы, молекулы или ионы прочно связаны между собой. Они находятся в узлах кристаллической решетки и способны совершать колебания. Действия тока обычно недостаточно для того, чтобы вырвать их со своих положений. Поэтому, говорят, что обычно химического действия тока в твердых телах не наблюдается.
В газах же возможно наблюдать такое действие. Вспомните электрофорную машину, где между электродами проскакивает искра.
После пропускания электрических искр через воздух, возникает характерный запах. По этому факту и ряду других было открыто такое химическое соединение как озон $O_3$ (рисунок 7). Оно состоит из трех молекул кислорода и обладает сильными окислительными свойствами. Это позволяет его широко использовать в качестве дезинфицирующего средства.
Рисунок 7. Молекула озона
Магнитное действие тока
Сразу начнем с проведения опыта. Возьмем медный провод, покрытый изоляционным материалом. Намотаем его на гвоздь. Концы его (провода) соединим с источником тока и ключом (рисунок 8).
Рисунок 8. Магнитное действие тока на примере с гвоздем и медным проводом
Замкнем цепь. Поднесем гвоздь к кучке мелких металлических предметов, например, других мелких гвоздиков.
Что мы увидим? Гвоздь притянет к себе другие железные предметы — он стал магнитом. Если мы разомкнем цепь, то гвоздь размагнитится.
Самое интересное, что магнитное действие тока является универсальным. Оно проявляется и в твердых телах, и в жидкостях, и в газах. Кроме того, если заставить заряд направленно двигаться в сильно разреженном пространстве (такое явление называют током в вакууме), то и здесь можно наблюдать его магнитное действие.
Характер и последствия воздействия на человека
Характер и последствия опасного и вредного воздействия на человека электрического тока зависит от многих факторов:
- от величины и рода (переменный или постоянный) протекающего тока;
- продолжительности его воздействия (чем больше время действия тока на человека, тем тяжелее последствия);
- пути протекания;
- от физического и психологического состояния человека;
- от состояния внешней среды, например при высокой влажности воздействие электричества на организм будет сильнее.
Величина и тип протекающего тока является главным фактором от которого зависит исход его воздействия на организм человека (или животного).
По степени воздействия на человека от величины ток делится на три пороговых значения:
- Человек начинает ощущать воздействие проходящего сквозь него переменного тока при значении 0,6 мА, прямого начиная с 5-7 мА. Эти значения называются пороговыми ощутимыми токами.
- Следующий порог – порог неотпускающего (удерживающего) тока. Его значение для переменного тока составляет ≥10 мА, для постоянного ≥50 мА.
- Третье пороговое значение – фибрилляционный ток. Это значение переменного тока 100 мА, а постоянного 300 мА, при длительности воздействия такого тока 0,5 сек, может наступить остановка сердца или его фибрилляция.
В таблице 1 приведены различные реакции организма человека на электрический ток в зависимости от его силы и типа.
Таблица 1 – воздействие электрического тока на человека в зависимости от пороговые значения и типа (постоянного и переменного)
Сила тока, мА | Характер воздействия | |
Постоянный ток | Переменный ток 50 Гц | |
0,6—1,6 | Не ощущается | Начало ощущения — слабый зуд, пощипывание кожи под электродами |
2—4 | Не ощущается | Ощущение тока распространяется и на запястье руки, слегка сводит руку |
5—7 | Начало ощущения. Впечатление нагрева кожи под электродом | Болевые ощущения усиливаются во всей кисти руки, сопровождаются судорогами. Руки, как правило, можно оторвать от электродов |
8—10 | Усиление ощущения нагрева | Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов |
10—15 | Усиление ощущения нагрева | Едва переносимые боли во всей руке. Руки невозможно оторвать от электродов. |
20—25 | Еще большее усиление ощущения нагрева кожи. | Руки парализуются мгновенно, оторваться от электродов невозможно. Сильные боли, дыхание затруднено |
25—50 | Ощущение сильного нагрева, боли и судороги в руках. При отрыве рук от электродов возникают едва переносимые боли в результате судорожного сокращения мышц | Очень сильная боль в руках и груди. Дыхание крайне затруднено. При длительном токе может наступить паралич дыхания или ослабление деятельности сердца с потерей сознания |
50—80 | Ощущение очень сильного поверхностного и внутреннего нагрева, сильные боли во всей руке и в области груди. Затруднение дыхания. Руки невозможно оторвать от электродов из-за сильных болей при нарушении контакта | Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном протекании тока может наступить фибрилляция сердца |
100 | Паралич дыхания при длительном протекании тока | Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич сердца |
300 | Фибрилляция сердца через 2-3 с; еще через несколько секунд — паралич дыхания | То же действие за меньшее время |
более 5000 | Дыхание парализуется немедленно — через доли секунды. Фибрилляция сердца, как правило, не наступает; возможна временная остановка сердца в период протекания тока. При длительном протекании тока (несколько секунд) тяжелые ожоги, разрушения тканей |
Как видно из таблицы 1, переменный ток более опасен чем постоянный. Тем не менее, даже небольшой, ниже порога ощущения постоянный ток, дает сильные удары способные вызвать судороги мышц. А при значении напряжения выше 500 В уже опаснее постоянный ток так как он обладает большой «липучестью» и от него практически невозможно самостоятельно освободиться.
В то же время, хотя переменный ток считается более опасным для человека, но это касается в основном частоты 50 Гц. С увеличением частоты, даже с учетом что сопротивление организма падает и ток текущий через него увеличивается – опасность поражения снижается электротоком и полностью исчезает при частоте 450 — 500 гГц, т.к. при высокой частоте возникает так называемый «skin» эффект – ток идет по поверхности организма, те по коже, и не может поразить человека. Но с токами такой частоты мы практически не сталкиваемся ни в быту, ни на производстве, в отличие от 50 герцового переменного напряжения, которое является стандартом в электросетях России.
Вернуться к содержанию
Гальванометр. Магнитное действие тока в его устройстве
Для начала рассмотрим, как будет взаимодействовать проводник с током и магнит.
Для этого соорудим следующую конструкцию. На небольшую рамку закрепим несколькими витками тонкую медную проволоку. Сама рамка у нас будет подвешена на нитях, чтобы мы могли наблюдать любое ее движение.
Проволока, которой обвита рамка, подсоединена к полюсам источника тока. Замкнем ключ. Рамка останется неподвижной (рисунок 9).
Рисунок 9. Рамка с током неподвижна
А теперь возьмем магнит. Расположим его так, чтобы рамка с током оказалась между его полюсами (рисунок 10).
Рисунок 10. Рамка с током, помещенная между полюсами магнита, поворачивается
Теперь рамка начала поворачиваться! Именно это явление взаимодействия такой своеобразной катушки с током и магнитом лежит в основе устройства специального прибора — гальванометра (рисунок 11).
Рисунок 11. Гальванометр и его обозначения для схем электрической цепи
Гальванометр — это прибор, с помощью которого можно судить о наличии тока в проводнике.
На рисунке 11, а показан внешний вид этого прибора. На рисунке 11, б приведен условный знак, которым гальванометр обозначается на схеме электрической цепи.
Стрелка гальванометра связана с катушкой внутри самого прибора. Под катушкой мы подразумеваем провод намотанный на каркас из диэлектрика.
Эта катушка внутри прибора находится в магнитном поле. Когда по катушке течет ток, стрелка отклоняется. Так, при подсоединении гальванометра в цепь, мы можем судить о наличии в ней электрического тока.
Электрический ток и закон Ома
Основные элементы электрической цепи:
- Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
- Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
- Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
- Ключ (переключатель, выключатель) для замыкания и размыкания цепи.
Электрическая цепь также может содержать:
- резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
- реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
- конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
- измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.
Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.
Световое действие тока
Старые лампы накаливания излучают свет больше за счет высокой температуры, которую имеет вольфрамовая проволока в их устройстве. Поэтому в их работе наблюдается больше тепловое действие тока.
Но во второй половине XX века были изобретены новые источники света. Здесь уже не играет роль температура самого проводника, а происходят более сложные процессы.
Наверное, вы уже догадались, что речь идет о светодиодных лампах (рисунок 12). На данный момент именно такие лампы чаще всего мы используем в повседневной жизни.
Рисунок 12. Светодиодные лампы
Световое действие проявляется в возникновении светового излучения при прохождении тока.
Задания
Задание №1
Рассмотрите рисунок 8, на котором изображена установка для наблюдения магнитного действия тока. Что представляет собой каждая часть этой установки? Расскажите, как протекает опыт.
В верхней части рисунка изображен источник тока. К его положительному полюсу подсоединена проволока в изолирующем материале (провод). Далее этот провод намотан на обычный железный гвоздь. От гвоздя провод тянется до ключа, а от ключа до источника тока (его отрицательного полюса).
На рисунке ключ замкнут. В цепи течет электрический ток. Железный гвоздь моментально намагничивается — становится магнитом. Он притягивает к себе другие мелкие железные предметы.
Как только мы разомкнем цепь, по проводам перестанет идти ток. Железный гвоздь размагнитится. Все мелкие предметы, ранее примагниченные к нему, отпадут.
Задание №2
По рисункам 9 и 10 расскажите, как на опыте наблюдают взаимодействие рамки с током и магнита.
Соберем электрическую цепь из источника тока, ключа, соединительных проводов и рамки с обмоткой из тонкой проволоки, соединенной с проводами. Рамку подвесим на нитях, чтобы была возможность отслеживать любое ее движение.
Замкнем ключ. По цепи пойдет ток. Рамка при этом останется неподвижной.
Теперь возьмем магнит. Поместим его так, чтобы рамка оказалась между его полюсами. Снова замкнем цепь. Теперь рамка пришла в движение — она начала поворачиваться.
Так проявляется магнитное действие электрического тока. Именно это явление используется в устройстве гальванометра.
Закон Джоуля-Ленца
Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.