Термопара представляет собой пару проводников-электродов из разнородных сплавов, концы которых с одной стороны свободны, а с другой – состыкованы (спаяны) между собой воедино. При погружении спаянного участка в ту или иную среду с определенной температурой Т1 возникает так называемый термоэлектрический эффект Зеебека: в силу различия термических характеристик проводники реагируют на температуру среды по-разному, и температура Т2 на их свободных концах оказывается неодинаковой. В результате возникает основанная на разности потенциалов термоэлектродвижущая сила (термо-ЭДС) и, как следствие, электрический ток, напряжение которого будет пропорциональным по отношению к разности температур Т1/Т2. Коэффициент пропорциональности при этом называют коэффициентом термо-ЭДС. Если к свободным концам электродов подключить замыкающий цепь электроизмерительный прибор (милливольтметр), то по показаниям стрелки на градуированной шкале можно будет замерить изменения температурных характеристик среды, в которую погружен стык термопары. Таким образом, термопара в комплекте с электроизмерительным прибором – это не что иное, как термоэлектрический термометр.
Подобные устройства находят широкое применение при замерах температурных показателей различных объектов, а также в составе автоматизированных систем управления/контроля. Благодаря высокой степени линейности, незначительной инерционности, простоте конструкции/монтажа, дешевизне и возможности производить измерения в широчайшем температурном диапазоне (от -250 °C до +2500 °C), в т.ч. в агрессивных средах, они сегодня используются практически повсеместно.
Хромель-алюмель тип К
Это один из самых применяемых типов термопар. На протяжении долгого времени измеряет температуры до 1100 0С, в коротком – до 1300 0С. Измерение пониженных температур возможно до -200 0С. Отлично функционирует в условиях окислительной атмосферы и инертности. Возможно применение в сухом водороде, и недолго в вакууме. Чувствительность – 40 мкВ/ 0С. Это самый стойкий тип термопары способный работать в реактивных условиях.
Минусами является высокая деформация электродов и нестабильная ЭДС.
Хромель-алюмель или термопара типа К не применяется в среде с содержанием О2 более чем 3%. При большем содержании кислорода хром окисляется и снижается термическая ЭДС. Тип К с защитным чехлом можно использовать в переменной окислительно-восстановительной атмосфере.
Для защиты термопары ХА применяется оболочка из фарфорового, асбестового, стекловолоконного, кварцевого, эмалевого материала или высокоогнеупорных окислов.
Чаще всего хромель-алюмель выходит из строя из-за разрушения алюмелевого электрода. Происходит это после нагревания электрода до 650 градусов в серной среде. Предотвратить коррозию алюмели можно лишь исключив попадание серы в рабочую среду термопары.
Хром портится из-за внутреннего окисления, когда в атмосфере содержится водяной пар или повышенная кислотность. Защитой является применение вентилируемой защиты.
Литература
- Термопара // Телецкое озеро — Трихофития. — М. : Советская энциклопедия, 1946. — ( : / гл. ред. О. Ю. Шмидт ; 1926—1947, т. 54).
- Киес Р. Дж., Крузе П. В., Патли Э. Г., Лонг Д., Цвиккер Г. Р., Милтон А. Ф., Тейч М. К.
§ 3.2. Термопара // Фотоприёмники видимого и ИК диапазонов = Optical and Infrared Detectors / пер. с англ. под ред. В. И. Стафеева. — М.: Радио и связь, 1985. — 328 с.
H. Melloni. Ueber den Durchgang der Wärmestrahlen durch verschiedene Körper (нем.) // Annalen der Physik und Chemie : журнал. — Leipzig: Verlag von Johann Ambrosius Barth, 1833. — Bd. 28. — S. 371—378.
Грунин В. К. § 2.3.4. Термоэлектрические приёмники излучения // Источники и приёмники излучения: учебное пособие. — СПб.: Издательство СПбГЭТУ «ЛЭТИ», 2015. — 167 с. — ISBN 978-5-7629-1616-5.
Хромель-копель тип L
Это также часто применяемая термопара позволяющая измерять в инертной и окислительной среде. Длительное измерение до 800 0С, короткое – 1100 0С. Нижний предел -253 0С. Длительная работа до 600С. Это самая чувствительная термопара из всех измерительных устройств промышленного типа. Обладает линейной градуировкой. При температуре 600 градусов выделяется термоэлектрической стабильностью. Недостатком является повышенная предрасположенность электродов к деформациям.
Положительным электродом у термопары типа L является хромель, а отрицательным – копель. Рабочая среда – окислительная или с инертно газовой составляющей. Возможно применение в вакууме при повышенной температуре короткое время. Используя хорошую газоплотную защиту ТХК можно использовать в серосодержащей и окислительной среде. В хлорной или фторсодержащей атмосфере возможна эксплуатация, но только до 200 градусов.
Схема подключения термопары
- Подключение потенциометра или гальванометра непосредственно к проводникам.
- Подключение с помощью компенсационных проводов;
- Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.
Железо-константан тип J
Используется в восстановительной, окислительной, инертной и вакуумной среде. Измерение положительных сред до 1100 0С, отрицательных – до -203 0С. Именно тип J рекомендуется применять в положительной среде с переходом в условия отрицательной температуры. Только в отрицательной среде ТЖК использовать не рекомендуется. На протяжении длительного времени измеряет температуры до 750 0С, в коротком интервале 1100 0С. Минусы: высокочувствительна — 50-65 мкВ/ 0С, поддается деформациям, низкая коррозийная стойкость электрода содержащего железо.
Положительным электродом у термопары типа J есть технически чистое железо, а отрицательным – медно-никелевый сплав константан.
ТЖК устойчива к окислительной и восстановительной среде. Железо при температурах от 770 0С поддается магнитным и ↔- превращениям, влияющим на термоэлектрические свойства. Нахождение термопары в условиях больше 760 0С не способно далее в точности измерять показатели температуры нижеуказанных цифр. В данном случае ее показания не соответствуют градуировочной таблице.
Скоки эксплуатации зависят от поперечного сечения электродов. Диаметр должен соответствовать измеряемым показателям.
В условиях температур выше 500С с содержанием серы в атмосфере рекомендуется применять защитный газоплотный чехол.
Устройство термопары
Принцип работы термопары. Эффект Зеебека
Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.
Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.
Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.
Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».
Компенсация температуры холодного спая (КХС)
Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.
КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).
Конструкция термопары
При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.
Особенности конструкции термопар:
1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).
ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.
2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.
Вольфрам-рений тип А-1, А-2, А-3
Отлично измеряет температуры до 1800 градусов. В промышленности используется для измерения показателей около 3000 0С. Нижний предел ограничивается – 1300 0С. Можно эксплуатировать в аргоновой, азотной, гелиевой, сухой водородной и вакуумной средах.
Термо-ЭДС при 2500 0С — 34 мВ для измерительных устройств из сплавов ВР5/20 и ВАР5 /ВР20 и 22 мВ, для термопар из сплава ВР10/20, чувствительность – 7-10 и 4-7 мкВ/ 0С.
ТВР характеризуется механической устойчивостью даже в условиях высокой температуры, справляется со знакопеременными нагрузками и резкими тепловыми сменами. Удобна в установке и практически не теряет свойств при загрязнении.
Минусы: низкая производимость термо-ЭДС; при облучениях нестабильная термо-ЭДС ; падение чувствительности при 2400
0С и более.
Более точные результаты у сплавов ВАР5/ВР20 наблюдаются при длительном измерении, что не так характерно для сплавов ВР5/20.
В ТВР электроды изготавливаются из сплавов ВР5 – положительный и ВР20 – отрицательный; ВАР5 – положительный и ВР20 – отрицательный или ВР10 – положительный и ВР20 – отрицательный электрод.
Незначительное наличие О2 способно вывести термопару вольфрам-рений из строя. В окислительной среде используются лишь в быстротекущем процессе. В условиях сильного окисления моментально выходит из строя.
Иногда эта термопара может использоваться в работе высокотемпературной печи совместно с графитовым нагревательным элементом.
В качестве электродных изоляторов применяют керамику. Оксид бериллия можно применять, как изолятор в том случае, когда воздействующая на него температура не превышает температур плавления. При измерении значений меньше 1600 0С электроды защищают чистым оксидом алюминия или магния. Керамический изолятор должен быть прокален для возможности очистки разных примесей. В условиях повышенного окисления используются чехлы из металла и сплавов Mo- Re, W-Re с покрытиями. Измерительный прибор с защитой из иридия можно кратковременно использовать на воздухе.
Проверка работоспособности термопары
Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.
Причины выхода из строя термопары:
- Неиспользование защитного экранирующего устройства;
- Изменение химического состава электродов;
- Окислительные процессы, развивающиеся при высоких температурах;
- Поломка контрольно-измерительного прибора и т.д.
Вольфрам-молибден
Эксплуатируется в инертной, водородной и вакуумной сфере. Температуры измерений – 1400 0С -1800 0С, пределы рабочих показателей — 2400 0С. Чувствительность — 6,5 мкВ/ 0С. Обладает высокой механической прочностью. Не нуждается в химической чистоте.
Минусы: низкая термо-ЭДС; инверсия полярности, повышение хрупкости при повышенных температурах.
Рекомендуется применять в водородной, инертногазовой и вакуумной среде. Окисление на воздухе происходит при 400 градусах. При повышении термической подачи окисление ускоряется. ТВМ не вступает в реакцию с Н и инертным газом до температур плавления. Данный тип термопары лучше не использовать без изоляторов, так как она при повышении температуры может вступать в реакцию с окислами. При наличии керамического изолятора возможно кратковременное применение в окислительной среде.
Для измерения термической составляющей жидкого металла изолируется обычно глиноземистой керамикой с применением кварцевого наконечника.
Преимущества и недостатки термометров сопротивления
Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.
Преимущества:
- практически линейная характеристика;
- измерения достаточно точны (погрешность не более 1°С);
- некоторые модели дешёвые и просты в использовании;
- взаимозаменяемость приборов;
- стабильность работы.
Недостатки:
- малый диапазон измерений;
- довольно низкая предельная температура измерений;
- необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.
Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.
Платинородий-платина типы R, S
Самые распространенные типы термопары для температур до 1600 0С. К данным устройствам относятся платина со сплавом платины и родия 10%-ти или 13%-ным составом. Применяются в инертной и окислительной среде. Длительное использование при 1400С, кратковременное — 1600С. Обладают линейной термоэлектрической особенностью в диапазоне 600-1600 0С. Показатель чувствительности — 10-12 мкВ/ 0С (10% Rh) и 11-14 мкВ/С (13% Rh). Производят высокоточное измерение, обладают высокой воспроизводимостью и стабильностью термо-ЭДС.
Минусы: нестабильность в облучаемой среде, повышенная чувствительность к загрязнениям.
ТПП с хорошим изолятором может применяться в восстановительной среде, и в условиях содержащих мышьяковые пары, серу, свинец, цинк и фосфор.
Практически не используются для измерения отрицательных температур по причине снижения чувствительности. Но, в отдельной сборке возможно измерение значений до -50 градусов. Для значений 300-600 0С применяются в качестве сравнительных показателей. Краткое применение – до 1600 0С, длительное – 1400 0С. С наличие защиты можно длительно эксплуатировать при 1500 0С.
Изоляторами в условиях температуры до 1200 0С применяются кварцевые и фарфоровые материалы или муллит и силлиманит. Образцовые термопары изолируют плавленым кварцем.
При использовании с вырабатываемой температурой в 1400 0С в качестве изолятора лучше применять керамику с окислю Al2O3. При слабоокислительной и восстановительной среде около 1200 0С.
В слабоокислительных и восстановительных условиях с температурой выше 1200 и независимо от условий с температурами выше 1400 0С необходимо в качестве изолятора использовать керамический высокочистый оксид алюминия. В восстановительной среде возможно применение оксида магния.
Обычно внутренний чехол для термопары состоит из того же материала из которого выполнен изолятор. Данные материалы должны быть газоплотными. В условиях разового измерения температур жидкой стали, чтобы защитить рабочий спай измерителя используются кварцевые наконечники.
Вся рабочая длина электродов должна быть заизолирована трубкой из керамики двухканального типа. Места стыка трубки и чехла, электрода и трубки должны иметь зазоры для вентиляции. Электроды должны тщательно очищаться от смазки перед установкой в изолятор. В свою очередь металлический чехол тоже должен быть сухим и чистым. Перед установкой на объект все компоненты термопары должны пройти отжиг. Термоэлектроды не должны выполнять опорную функцию для изолятора. Особенно это важно для вертикальных термопар.
ÐеиÑпÑавноÑÑÑ ÑеÑмопаÑÑ Ð¿Ð»Ð¸Ñ
У каждого ÑÑÑÑойÑÑва найдÑÑÑÑ ÑлабÑе меÑÑа, и ÑеÑмоÑлекÑÑиÑеÑкий пÑеобÑазоваÑÐµÐ»Ñ — не иÑклÑÑение. Ðн оÑлиÑаеÑÑÑ Ð¾Ñобой ÑÑвÑÑвиÑелÑноÑÑÑÑ Ðº ÑоÑÑоÑÐ½Ð¸Ñ Ð´Ð°ÑÑика, коим ÑвлÑеÑÑÑ ÐµÐ³Ð¾ «гоÑÑÑий» конеÑ. Ðа его повеÑÑноÑÑи Ð¼Ð¾Ð¶ÐµÑ Ð¿Ð¾ÑвиÑÑÑÑ ÑилÑнÑй Ð½Ð°Ð³Ð°Ñ Ð¸Ð»Ð¸ пÑоÑие загÑÑзнениÑ. Ðо ÑÑой пÑиÑине ÑеÑмопаÑа не ÑпоÑобна вÑÑабоÑаÑÑ Ð½ÐµÐ¾Ð±Ñодимое напÑÑжение, в ÑезÑлÑÑаÑе Ñего плиÑа полноÑÑÑÑ Ð½Ðµ ÑÑнкÑиониÑÑÐµÑ Ð»Ð¸Ð±Ð¾ ÑабоÑÐ°ÐµÑ Ñ Ð¿ÐµÑебоÑми.
Ðак ÑÑо пÑоÑвлÑеÑÑÑ? ÐÑи нажаÑии кнопки Ñозжига загоÑаеÑÑÑ Ð¾Ð´Ð½Ð° из конÑоÑок, но ÑÑÐ¾Ð¸Ñ Ð¾ÑпÑÑÑиÑÑ ÐµÐµ â Ð¿Ð»Ð°Ð¼Ñ Ð³Ð°ÑнеÑ. ÐÑли Ñакое пÑоиÑÑодиÑ, можно попÑобоваÑÑ Ð¿Ð¾ÑиÑÑиÑÑ Ð´Ð°ÑÑик наждаÑной бÑмагой Ñ Ð¼ÐµÐ»ÐºÐ¸Ð¼ зеÑном. ÐÑли же ÑезÑлÑÑÐ°Ñ Ð½Ðµ измениÑÑÑ, или измеÑÐµÐ½Ð¸Ñ ÑеÑмопаÑа пÑÐ¾Ð¸Ð·Ð²Ð¾Ð´Ð¸Ñ Ð½ÐµÑоÑно, ÑкоÑее вÑего, нÑжна замена ÑеÑмопаÑÑ.
Платинородий-платинородий тип В
Используется в окислительных и нейтральных условиях. Возможна эксплуатация в вакуумной среде. Максимальная температура измерений длительного потока 1600 0С, кратковременная — 1800С. Чувствительность — 10,5-11,5 мкВ/ 0С. Выделяется хорошей стабильностью термического ЭДС. Возможно применение без удлинительных проводов из-за низкой чувствительности в температурном диапазоне от 0 до 100 0С.
Изготавливается из сплава платины и родия ПР30 и ПР6.
В атмосфере восстановительного типа и паров металлического и неметаллического состава необходима надежная защита. В качестве изолятора используется керамическое сырье из чистого Al2O3.
Характеристики эксплуатации и прочностные данные соответствуют термопарам типов R, S. Но, выходят они из строя намного реже по причине низкой подверженности химзагрязнениям и росту зерен.
Способ производства
Хромель и алюмель – одни из самых трудоёмких в производстве. Сложность технологического процесса заключается в необходимости строгого контроля пропорций компонентов во время плавления, так как ключевые характеристики конечного продукта обусловлены в основном соотношением материалов. Составы производят в индукционных печах различной частотности.
Порядок плавления следующий. Большую часть хрома загружают в жидкую ванну, оставляя несколько килограмм для коррекции. Затем вводят никель и одновременно флюс. Плавление ведется в интенсивном режиме. Раскисление металла производится добавлением марганца и магния. Затем проводится определение термоэлектродвижущей силы и корректировка содержания хрома.
Аналогичным способом производятся другие никелевые сплавы. Различия заключаются в очередности загрузки материалов и окислителях. Например, производство сплава алюмель производится следующим образом. Загружаются никель и флюс, уже после этого остальные компоненты. В качестве окислителя используется магний. Таким образом получают алюмелевые сплавы, хромель и копель.