Регулирование возбуждения синхронных генераторов (стр. 6 )


Что такое система возбуждения в генераторе переменного тока?

1. Возбуждение — это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.

2. Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.

3. Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North — северный) и S (South — южный).

Рис. 3.13(а). Простой электромагнит.

Из-за большого расстояния между полюсами магнитные силовые пинии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).

Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.

И, наконец, выполним полюса мегнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить «утечка» магнитного поля наружу. При вращении ротора эта «утечка» будет пересекать обмотки статора, и наводить в них э.д.с. 4. Для того чтобы магнитное попе роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.

Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).

Рис. 3.14. Зубчатый ротор генератора.

Магнитное поле ротора, необходимое для создания электродвижущей силы обмотки статора любого генератора, создается постоянным током, протекающим по обмотке возбуждения (ОВ). Для питания ОВ предназначена система возбуждения, в значительной степени определяющая надежность работы синхронных генераторов. В связи с этим к системе возбуждения предъявляются следующие основные требования:

  • 1) надежное питание постоянным током ОВ в любых режимах, в том числе при авариях в энергосистемах;
  • 2) устойчивое регулирование тока возбуждения при изменении нагрузки генератора;
  • 3) необходимое быстродействие;
  • 4) форсировка возбуждения, т.е. обеспечение быстрого нарастания тока возбуждения, примерно до двукратного значения;
  • 5) быстрое гашение магнитного поля возбуждения при оперативных отключениях генератора от сети.

В зависимости от источника энергии, используемого для питания обмоток возбуждения, системы возбуждения разделяются на группы:

  • 1) электромашинное возбуждение с использованием генератора постоянного тока;
  • 2) электромашинное возбуждение с использованием генератора переменного тока с преобразованием этого тока в постоянный;
  • 3) самовозбуждение путем преобразования части электрической энергии переменного тока генератора в энергию постоянного тока возбуждения.

Электромашинные системы возбуждения, где источником энергии является генератор постоянного тока, т.е. возбудитель, использовались в течение длительного времени для большинства генераторов. Обычно они находились на одном валу с генератором и приводились во вращение той же турбиной, что и сам генератор. Такая система называется прямой. В случае, если возбудитель приводится во вращение отдельным двигателем, то систему принято называть косвенной.

В отечественном генераторостро- ении применяют, как правило, прямую систему возбуждения, имеющую меньшую стоимость и большую надежность.

Увеличение мощностей турбо- и гидрогенераторов, а следовательно, необходимых мощностей возбудителей инициировало необходимость замены генераторов постоянного тока электромашинными системами возбуждения с применением генераторов переменного тока, не имеющих никаких ограничений по мощности. Для преобразования переменного тока в постоянный ранее использовались ртутные выпрямители, которые в дальнейшем уступили место управляемым и неуправляемым полупроводниковым преобразователям на основе диодов, тиристоров, транзисторов. Полупроводниковые преобразователи обладают большей надежностью, а в целом система с генераторами переменного тока большим быстродействием, позволяющим осуществить высокий уровень возбуждения (до четырехкратного номинального напряжения возбуждения при постоянном времени системы возбуждения менее двух сотых секунды). Широкое внедрение систем возбуждения с управляемыми преобразователями было осуществлено впервые в мире в нашей стране. В дальнейшем переход на такие системы был осуществлен и за рубежом.

Комплект поставки:

В комплект системы возбуждения входит:

  • Шкаф системы возбуждения;
  • Защитное сопротивление (внутри шкафа системы возбуждения);
  • Преобразовательный трансформатор;
  • Комплект технической документации на русском языке: паспорт, техническое описание и инструкция по эксплуатации, комплект схем и чертежей, описание сервисного программного обеспечения (на электронном носителе);
  • Электронный носитель с документацией и сервисным ПО;
  • Комплект ЗИП (состав согласно техническим требованиям Заказчика).

*По требованию Заказчика комплект поставки может быть изменен. Точный комплект поставки указывается в паспорте на изделие.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Конструкция системы возбуждения:

Конструктивно система возбуждения выполнена в одном металлическом шкафу одностороннего обслуживания степенью защиты IP22 (по требованию — IP31, IP54).

Шкаф системы возбуждения содержит:

  • Аппараты защиты силовых цепей;
  • Аппараты защиты цепей управления;
  • Микропроцессорный регулятор возбуждения (для двухканальных систем — два независимых регулятора возбуждения);
  • Тиристорный преобразователь (для систем с резервированием силовой части — два независимых тиристорных преобразователя);
  • Пусковые сопротивления с тиристорным ключом;
  • Цепи резервирования питания цепей управления;
  • Органы управления и индикации на передней двери шкафа.

Защиты системы возбуждения

Система возбуждения обеспечивает следующие виды защит:

  • От потери возбуждения;
  • От повышения напряжения статора генератора в режиме холостого хода;
  • От снижения частоты напряжения статора генератора в режиме холостого хода;
  • От превышения предельного тока возбуждения возбудителя;
  • От неисправности канала управления тиристорным выпрямителем;
  • От коротких замыканий на выходе преобразователя;
  • От перегрузки по току возбуждения;
  • От снижения сопротивления изоляции обмотки возбуждения.

Параметры и диапазон настроек приводятся в технической документации на систему возбуждения.

Срабатывание защит отображается на дисплее, записывается в журнал событий регулятора, фиксируется на выходных реле и передаётся в схему защит в виде дискретного сигнала или по цифровому интерфейсу.

Синхронизация с сетью (опция)

По согласованию с Заказчиком возбудитель может комплектоваться устройством синхронизации с сетью, при этом обеспечивается:

  • Автоматическая синхронизация
  • Ручная точная синхронизация

Автоматическая и ручная точная синхронизация действуют как при местном, так и при дистанционном управлении. Дополнительно для обеспечения синхронного включения генератора в сеть в синхроноскоп встроено реле контроля синхронизма, выходной сигнал этого реле последовательно соединяется с сигналом на включение сетевого выключателя.

Телеуправление (опция)

Возбудитель имеет возможность телеуправления. Телеуправление – управление, осуществляемое оперативным персоналом с удалённого узла пункта управления или диспетчерским персоналом из диспетчерского центра с использованием кодированного сигнала передаваемого по каналам связи.

По средствам телеуправления система возбуждения может принимать следующие команды:

  • Увеличить уставку;
  • Уменьшить уставку;
  • Включить возбуждение;
  • Отключить возбуждение (гашение);
  • Включить регулирование по Uг (напряжению генератора);
  • Включить регулирование по Q;
  • Переключение регуляторов с основного на резервный и обратно;
  • Сброс защит;
  • Включить автономный режим;
  • Включить ручной режим регулятора;
  • Отключить ручной режим (включить автоматический режим) регулятора.

При необходимости объём команд согласуется с Заказчиком на стадии рабочего проектирования. Телеуправление может быть организовано с помощью специализированных сетевых карт по протоколам MODBUS RTU, MODBUS TCP/IP, PROFIBUS DP (интерфейсы RS485 и Ethernet) по согласованию с Заказчиком.

Система возбуждения обеспечивает все необходимые измерения и информационный обмен с АСУ ТП станционного уровня и взаимодействие с системами агрегатного уровня включая: измерение и выдачу сигналов по току и напряжению статора генератора, цепи возбуждения, а также частоты генератора на ГЩУ и на собственную лицевую панель, при этом предусмотрена связь с АСУ ТП станции и агрегатным уровнем по последовательному интерфейсу RS485 и (или) Ethernet. Тип протокола, тип интерфейса и объём необходимой информации, передаваемой в АСУ, должен оговариваться отдельно с каждым Заказчиком на стадии рабочего проектирования. 

Дискретные сигналы

Дискретные сигналы о состоянии технологического оборудования выводится в виде двоичных сигналов «0» «1». При этом в качестве сигнала «1» могут применяться напряжения переменного тока 220В, постоянного тока 220, 48, 24В. Каналы ввода/вывода аналоговых и дискретных сигналов гальванически развязаны между собой и относительно «земли».

Система управления возбуждением

Система управления возбуждением осуществляет автоматизированное управление устройствами системы возбуждения, обеспечивая функции контроля оборудования системы возбуждения.

Система возбуждения генератора выполнена по одноканальной или двухканальной (со 100% резервированием систем управления и тиристорных выпрямителей) схемам. Питание цепей управления резервируется от источника оперативного постоянного тока 220В и(или) от сети собственных нужд ~220B, в зависимости от исполнения.

В двухканальных системах каждый регулятор (АRV1 и АRV2) представляет собой полнофункциональную систему управления возбуждением генератора, обладает собственным набором аналоговых датчиков (с индивидуальной гальванической изоляцией), дискретных входов и выходов, аппаратами защиты. При повреждении работающего канала осуществляется автоматический, безударный переход на исправный регулятор.

Каждый канал обеспечивает автоматическое и ручное регулирование возбуждения, переключение между ручным и автоматическим режимами регулирования осуществляется безударно. Переключение режимов (Автоматический/Ручной) осуществляется с помощью ключа на лицевой панели шкафа (в режиме местного управления) или от ГЩУ (в режиме дистанционного управления). Также, включение ручного режима осуществляется автоматически — при потере измерительных цепей напряжения и одновременной неготовности резервного канала. Регулирование напряжения генератора, независимо от номера активного канала и режима регулирования, выполняется одним ключом на лицевой панели или ГЩУ.

Система управления состоит из следующих взаимосвязанных модулей: 1. Два независимых микропроцессорных регулятора возбуждения DExS (для двухканальных систем); 2. Коммуникационный модуль iCM; 3. Панель оператора DExS.OP.CM3; 4. Система резервирования питания собственных нужд.

Автоматический регулятор возбуждения DExS

Система управления представляет собой многопроцессорный блок управления возбуждением DExS, реализующий прямое цифровое управление тиристорным возбудителем. Применены быстродействующие процессоры цифровой обработки сигналов с блоком FPU (блок вычислений чисел с плавающей точкой).

Преимущества DExS:

  • Представляет собой моноблочный встраиваемый модуль, обеспечивающий полный функционал для управления возбуждением генератора. Включает полный набор входов/выходов:
  • Аналоговые входы допускают прямое измерение сигналов от базовых датчиков (ток и напряжение статора и ротора).
  • 16 дискретных входов и 16 дискретных выходов =24В.
  • СИФУ — 6 усилителей управляющих импульсов тиристоров.
  • Высокая точность вычислений регуляторов за счёт применения чисел с плавающей точкой.
  • Высокая скорость вычислений. Обработка всех аналоговых сигналов и регулятора возбуждения выполняется с постоянной частотой 10КГц.
  • Полностью отсутствуют подстроечные элементы. Все уставки хранятся в энергонезависимой памяти и многократно продублированы с функцией автоматического восстановления неисправного блока уставок из резервной копии.
  • Дополнительный съёмный ключ резервной копии уставок.
  • Усилители импульсов тиристоров с контролем проводимости вентилей.
  • Автоматическая фазировка СИФУ – корректно работает с любой фазировкой.
  • Автоматическое непрерывное измерение сопротивления изоляции ротора в диапазоне 0-2000 кОм с шагом 62 Ом.
  • Встроенный осциллограф 10.000 выборок в секунду для 32 каналов (32 любых выбранных 16-разрядных регистра) с настраиваемыми сценариями автозапуска, количеством пред- и поствыборок. Используется для ПНР и в качестве аварийного осциллографа. Аварийные осциллограммы переписываются в энергонезависимую память после остановки генератора.

Коммуникационный модуль iCM

Благодаря модулю iCM, внешним потребителям данных (АСУ ТП, КИПиА, панель оператора) два регулятора DExS (для систем с резервированием) представляются как одно устройство.

Коммуникационный модуль iCM предоставляет следующие сервисы:

  • Синхронизация уставок регуляторов DExS (уставки DExS должны быть полностью идентичны в течение всей работы возбудителя).
  • Двухсторонний обмен информацией между двумя DExS и внешними потребителями данных (панель оператора, ПЛК). Для доступа со стороны АСУ ТП, iCM оснащён:
  • Ethernet 10/100T Мбит, протокол MODBUS TCP/IP
  • RS485 протокол MODBUS RTU
  • Передача данных «от» и «в» цепи КИПиА от централизованного источника, посредством:
  • 2 входа 4-20мА
  • 2 выхода 4-20мА
  • 12 дискретных входов =24В
  • 8 дискретных выходов =24В 150мА
  • Первичное накопление данных статистики и осциллографирование на micro-SD карту объёмом до 4ГБ (8 суток непрерывной записи).

Панель оператора DExS.OP.CM3

Щитовые приборы предоставляют оперативную информацию об основных параметрах системы, при этом являются энергонезависимыми индикаторами (не требуют дополнительного источника питания). Панель оператора увеличивает информационные возможности. Панель оператора отображает детальную информацию о работе системы возбуждения и генератора, позволяет изменять уставки, просматривать архивы событий и статистику, копировать необходимую информацию на внешние накопители.

Просмотр статистики и осциллограмм из регистратора событий возможен с помощью ПО Ajuster (по интерфейсу) и панели оператора. Панель оператора предоставляет расширенный сервис по регистрации событий:

  • запись осциллограмм и статистики на SD-карту (можно извлечь для расследования инцидентов);
  • осциллограмма — это непрерывная запись 30 суток с частотой 100 записей всех параметров регулятора в секунду;
  • осциллограмму и статистику можно скопировать на USB Flash-диск или по сети на диск удалённого сервера;
  • доступ к файлам возможен через Ethernet по защищённому SSH протоколу;
  • с помощью панели оператора можно просмотреть осциллограмму любого события, в пределах произвольно заданного интервала времени «до» и «после» события.

Тиристорные преобразователи

Тиристорный преобразователь (выпрямитель) выполнен по мостовой схеме: при номинальном токе возбуждения до 400А применяются тиристорные модули, установленные на охладители с естественным воздушным охлаждением; выпрямители свыше 400А изготавливаются на таблеточных тиристорах, охлаждение которых производится комбинированным способом.

Комбинированный способ охлаждения совмещает естественное и принудительное охлаждение. Специальный модуль термоконтроля измеряет температуру тиристорных сборок в нескольких точках с помощью цифровых датчиков температуры и включает вентиляторы только при нагреве свыше заданной уставки и отключает после вентиляторы охлаждения сборок до заданной температуры.

В системах возбуждения с резервным тиристорным преобразователем каждый тиристорный выпрямитель имеет автоматический выключатель на вводе и разъединитель в цепи постоянного тока. Сигналы от выключателя и разъединителя заведены в регулятор и при отключении коммутационной аппаратуры (при срабатывании защиты или в ручную), происходит автоматический переход на резервный выпрямитель.

Гашение поля

Гашение поля генераторов до 12,5 МВт осуществляется только гасящими сопротивлениями, которые подключаются параллельно обмотке возбуждения симисторным ключом (два встречно-параллельно включённых тиристора), который управляется автономно специальной платой. Уставка включения гасящих сопротивлений выбирается DIP-переключателем установленным на плате. Перед пуском генератора и до подачи тока возбуждения цепь гашения включена принудительно с помощью реле. Данная цепь гашения встроена в шкаф системы возбуждения.

Силовой трансформатор

Питание тиристорных выпрямителей основного и резервного канала осуществляется от преобразовательного трансформатора TE, который может быть подключён к шинам генератора по схеме самовозбуждения либо питаться от источника 0,4 кВ.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]