Высокочастотные и низкочастотные конденсаторы постоянной ёмкости. Полупеременные конденсаторы медицинской электроники (стр. 1 из 2)

Высоковольтные (ВВ) конденсаторы – устройства, широко применяемые в находящихся под очень высоким напряжением электрических цепях различных приборов и оборудования. В отличие от низковольтных аналогов, они обладают надежной конструкцией и большим сроком эксплуатации, высокой стоимостью. О том, что собой такие устройства представляют, каких видов бывают, как работают и где используются, пойдет речь в данной статье.


Высоковольтный конденсатор

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП скачайте тут.

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Далее внимательно распаиваем детали на плате согласно схеме и ПП.

Теперь самое интересное в ИИП — трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это – ExcellentIT. В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Преобразователя напряжения 1,5 В/-9 В

Рис. 8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. представляет собой однотактный релаксационный генератор с емкостной положительной обратной связью (С2, C3). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1.

В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке.

При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и C3, которые одновременно являются делителем напряжения обратной связи.

Когда транзистор VT2 закрывается, конденсаторы С2 и C3 в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2.

При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается.

Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток. Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

Радиоэлементы из старой аппаратуры: конденсаторы

Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 — вакуумные; 2 — воздушные; 3 — газонаполненные; 4 — твердый диэлектрик; 5 — жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 — подстроечный конденсатор с твердым диэлектриком.

Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)


Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов. 2 — переменный конденсатор для УКВ блоков с верньером 3 — переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.

Рис. 4 Конденсатор КСО

Конденсаторы КСО — Конденсатор слюдяной опресованный. Диэлектрик — слюда, обкладки — алюминиевое напыление. Залит в корпус из коричневого компаунда. Встречаются в аппаратуре 30-70-х годов, емкость не превышает несколько десятков нанофарад, на корпусе указывается в пикофарадах нанофарадах и микрофарадах. Благодаря применению слюды в качестве диэлектрика, эти конденсаторы способны работать на высоких частотах, поскольку имеют малые потери и имеют большое сопротивление утечки около 10^10 Ом.

Рис. 5 Конденсаторы КТК

Конденсаторы КТК — Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные — голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.


Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная: 22р-22 пикофарада 2n2- 2.2 нанофарада n10 — 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.


Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.

Рис. 8. МБГО, МБГЧ


Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО — конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.

Рис. 10. Различные типы конденсаторов


Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6<1600B) К50 -Электролитический, фольговый, Алюминиевый К15 -Керамический, высоковольтный (Upa6>1600B) К51 -Электролитический, фольговый, танталовый,ниобиевый и др. К20 -Кварцевый К52 -Электролитический, объемно-пористый К21 -Стеклянный К53 -Оксидо-полупроводниковый К22 -Стеклокерамический К54 -Оксидно-металлический К23 -Стеклоэмалевый К60- С воздушным диэлектриком К31- Слюдяной малой мощности (Mica) К61 -Вакуумный К32 -Слюдяной большой мощности К71 -Пленочный полистирольный(KS или FKS) К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками К72 -Пленочный фторопластовый (TFT) К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT) К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками К75 -Пленочный комбинированный К76 –Лакопленочный (MKL) К42 -Бумажный с металлизированными Обкладками (MP) К77 -Пленочный, Поликарбонатный (KC, MKC или FKC) К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)

Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение лат. рус.
+/- 0,05p A
+/- 0,1p B Ж
+/- 0,25p C У
+/- 0,5p D Д
+/- 1,0 F Р
+/- 2,0 G Л
+/- 2,5 H
+/- 5,0 J И
+/- 10 K С
+/- 15 L
+/- 20 M В
+/- 30 N Ф
-0…+100 P
-10…+30 Q
+/- 22 S
-0…+50 T
-0…+75 U Э
-10…+100 W Ю
-20…+5 Y Б
-20…+80 Z А

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В Буква обозначения
1 I
1,6 R
2,5 M
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.


Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.

Рис. 14. Электролитические конденсаторы. Снизу — для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.

Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести: Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов). Напряжение зависит от степени заряженности. Возможность выгорания внутренних контактов при коротком замыкании. Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10…100 Ом у ионистора 1 Ф × 5,5 В). Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В[4].

Рис. 16. Ионисторы

Источники: www.powerinfo.ru www.qrz.ru www.go-radio.ru форум cxem.net

Описание

Изобретение относится к электротехнике, в частности к силовым высоковольтным импульсным конденсаторам, и может быть использовано для создания емкостных накопителей электрической энергии в генераторах импульсных токов электрогидравлических установок интенсификации добычи нефти и газа.Целью изобретения является расширение области применения и улучшение условий эксплуатации силового высоковольтного импульсного конденсатора.Изобретение при параллельном соединении конденсаторов исключает необходимость применения дополнительных соединительных высоковольтных (30000 В) перемычек, которые весьма сложно протягивать между металлическими корпусами конденсаторов внутри нефтяных или газовых металлических труб малого диаметра (0,114 м) и сложно обеспечить требуемую электрическую прочность, исключающую случаи электрического пробоя между перемычками, корпусами конденсаторов и нефтяными газовыми трубами.Сущность изобретения поясняется чертежом.Силовой высоковольтный импульсный конденсатор содержит цилиндрический металлический корпус 1, включающий пружины 2 и полый цилиндрический пакет 3 из последовательно соединенных пропитанных цилиндрических секций 4, металлическую крышку 5 с изолятором 6, дно 7, положительный 8 и отрицательный 9 токовыводы. Из дополнительных токовыводов 10, 11 один токовывод 10 размещен внутри дополнительного изолятора 12, закрепленного на дне 7 конденсатора, и соединен с торцом пакета 3 секций, имеющим положительную полярность, второй дополнительный токовывод 11 закреплен непосредственно на дне 7 конденсатора и соединен с торцом пакета 3 секций, имеющим отрицательную полярность, и металлическим корпусом 1. Основную часть этого электрического соединения выполняет корпус 1 конденсатора, а оставшуюся часть — отрицательный токовывод 9, закрепленный одним из своих концов на крышке 5 конденсатора. Компенсаторы 13, установленные на внутренней поверхности дна 7 и крышке 5, сообщаются с окружающей конденсатор средой через отверстия в дне 7 и крышке 5 и служат для компенсации температурного расширения пропитывающего диэлектрика внутри жесткого корпуса конденсатора. Изоляция 14 и изоляционные вставки 15 служат для предотвращения пробоя между пакетом 3 секций, корпусом 1, крышкой 5 и дном 7 конденсатора.Предлагаемый конденсатор на рабочее напряжение 30000 В и емкость 0,5 10-6 Ф может быть изготовлен в стальной трубе длиной 0,923 м, наружным диаметром 95 10-3 м и толщиной стенки 2,5 10-3 м. В качестве токовыводов могут быть использованы медные шпильки. В качестве изоляторов токовыводов могут быть использованы малогабаритные высоковольтные изоляторы ИКПМ-63 или ИКПМ-30. В качестве компенсаторов температурного расширения пропитывающего диэлектрика могут быть использованы сильфоны из бериллиевой бронзы 28 6 0,2 — 1 БрБ2. Цилиндрическая секция может быть изготовлена путем намотки на цилиндрическую оправку многослойного бумажно-лавсанового диэлектрика БПБПБПБ (Б — слой конденсаторной бумаги марки КОН-2 толщиной 5 10-6 м;П — слой лавсановой пленки ПЭТ-КЭ толщиной 10 10-6 м, 15 10-6 м) пропитанного касторовым маслом ГОСТ 18102-72. Для обкладок может быть использована алюминиевая фольга марки А5-Т, толщиной 9 10-6 м. Секции могут быть соединены между собой последовательно в полый цилиндрический пакет с помощью пайки к торцам секций гибких медных проводников плоской формы. В качестве элементов, соединяющих токовыводы с торцами пакета, может быть применен гибкий многожильный медный провод МГ-10.Изготовленный таким образом конденсатор силовой высоковольтный импульсный на рабочее напряжение 30000 В и емкостью 0,5 10-6 Ф имеет следующие габариты корпуса: диаметр 95 10-3 м и длину 0,925 м.В отличие от прототипа предлагаемый конденсатор имеет более широкую область применения и лучшие условия эксплуатации, что позволяет применить его для создания емкостных накопителей электрической энергии в генераторах импульсных токов электрогидравлических установок интенсификации добычи нефти и газа.Изобретение относится к электротехнике. Силовой высоковольтный импульсный конденсатор (СВИК) имеет цилиндрический металлический корпус 1, пружину 2, полый цилиндрический пакет (ПЦП) 3 из пропитанных цилиндрических секций 4, металлическую крышку 5, дно 7, токовыводы 8-11, изоляторы 6, 12, компенсаторы. Изоляции 14 и изоляционные вставки 15 предотвращают пробой между ПЦП 3, корпусом 1, крышкой 5 и дном 7. Изобретение расширяет область использования СВИК и улучшает условия его эксплуатации. 1 ил.

Область применения

Конденсаторы высоковольтные импульсные служат в качестве накопителей энергии. Они применяются в магнитной штамповке, дроблении породы, очистке металлических отливок и другой деятельности. Большое распространение получили лазерные технологии, применяемые и в промышленности и в медицине. Конденсаторы используются в генераторах коммуникационных перенапряжений и при испытаниях силовых и импульсных трансформаторов. Емкостные накопители энергии, работающие на основе высоковольтных импульсных конденсаторов, служат для исследования и получения плазмы, создания импульсных потоков и сверхмощных магнитных полей.

Основы импульсного преобразования

Работа подобных устройств, их ещё называют импульсными стабилизаторами (ИС), основана на ключевой стабилизации. В схеме имеется элемент, который выполняет регулировку выходных параметров за счёт своего запирания-отпирания.

В обычную трансформаторную схему входит трансформатор низкой частоты, имеющий первичную и вторичную обмотку. Импульсное преобразование тоже подразумевает наличие трансформатора, но уже высокочастотного.

Внимание! Высокочастотные импульсные трансформаторы обладают меньшими габаритами, дешевле, но их мощность выше. Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

  • повышающей;
  • понижающей;
  • инверторной.

ИПН обладают высоким КПД и малыми габаритами. Они включают в свой состав следующие элементы:

  • блок питания (источник питания);
  • ключ – элемент коммутации;
  • накопитель энергии индуктивной природы – дроссель, катушка;
  • диод блокировки;
  • фильтр выходного напряжения – конденсатор большой емкости.

Фильтр обычно включается параллельно нагрузке.

Виды ВВ конденсаторов

В зависимости от конструктивных особенностей и материала диэлектрика данные устройства бывают керамическими, бумажными, металлизированными, масляными, вакуумными, фазосдвигающими, подстроечными, биполярными.

Керамические изделия

Керамические импульсные конденсаторы – накопители, в которых в качестве диэлектрика используется специальная керамика. В отличие от низковольтных аналогов, такие кондеры работают при напряжении от 0,2 до 50 кВ и частоте тока от 0,5 до 10 кГц. При этом емкость их лежит в диапазоне от 2-2,5 до 25 нф. Используются они в цепях постоянного, переменного или пульсирующего тока, сетевых фильтрах как X/Y конденсаторы, а также высокочастотных схемах для устранения помех, поглощения шумов.

Наиболее часто применяемыми марками данных устройств являются следующие:

  • К75-25 (15);
  • К15-4;
  • К15-5;
  • К15-10;
  • КВИ-3.


Керамический накопитель заряда КВИ-3

Металлизированные и бумажные (плёночные)

Имеющие схожую конструкцию накопители заряда данных видов состоят из:

  • Диэлектрика – конденсаторной бумаги, полимерной пленки из таких материалов, как полипропилен, полиэстер, поликарбонат.
  • Обкладок – фольги или тонкого слоя металла, нанесенного на пленочный полимерный диэлектрик вакуумным напылением.
  • Двух контактов (выводов), припаянных к обкладкам.

Наиболее востребованными среди пленочных металлизированных устройств являются модели с рабочим напряжением 16 и 25 кВ и емкостью 2200 пФ (2,2нФ).

Накопители с бумажным диэлектриком, в отличие пленочных металлизированных аналогов, имеют более низкое рабочее (номинальное) напряжение: от 0,2 до 15 кВ (200-1500 В). Однако при этом их емкость колеблется от 0,1 до 2 мкФ (100000 – 2000000 пФ или 100-2000 нФ). Как и аналоги с керамическим диэлектриком, они способны работать с токами частотой от 50 до 10 000Гц (10кГц).

Применяют пленочные и бумажные высоковольтные конденсаторы в выпрямительных и фильтрующих цепях, электронных умножителях и удвоителях напряжения.

На заметку. В бумажных накопителях заряда допускается отклонение ёмкости накопителя от номинального значения данной характеристики не более, чем на 20%.


Конденсатор мбгч-1

Масляные и вакуумные образцы

Наиболее часто применяемый и востребованный вакуумный высокочастотный конденсатор переменной емкости марки КП 1-4 представляет собой устройство, состоящее из следующих частей:

  • стеклянный баллон, внутри которого путем откачки воздуха создан высокий вакуум;
  • неподвижный цилиндрический электрод;
  • гофрированный подвижный электрод («гармошка»);
  • привод подвижного электрода, под большим усилием перемещающий «гармошку» внутрь неподвижного электрода;
  • круглая ручка и окошко со шкалой для регулировки емкости накопителя.

Емкость данного накопителя колеблется от 10 до 500пФ, рабочее напряжение – до 10кВ. Применяется такое устройство в радиолюбительской передающей аппаратуре в диапазоне частот до 30-80 МГц в качестве контурных, блокировочных, фильтровых, а также разделительных конденсаторов.

Масляный накопитель заряда самой распространенной марки КБГ-МН состоит из:

  • металлического прямоугольного корпуса;
  • скрученного в рулон полимерного или бумажного диэлектрика;
  • обкладок из алюминиевой фольги, разделенных диэлектриком;
  • двух выводов, припаянных к обкладкам и соединенным с контактами на крышке корпуса.

Скрученный рулон из диэлектрика и обкладок находится в специальном масле, заполняющем корпус. Емкость устройства данной марки составляет 0,5 мкф (500нФ), рабочее напряжение – 600 В (0,6кВ).

На заметку. В высоковольтных накопителях заряда достаточно высокое содержание различных драгметаллов: палладия, платины, технического серебра.

Основные виды высоковольтных конденсаторов

Подробности Категория: Высоковольтные устройства Опубликовано 20.07.2016 09:05 Автор: Admin

В высоковольтных устройствах ни как не обойтись без высоковольтных конденсаторов. К примеру в таких устройствах как умножители напряжения, генераторах Маркса, катушек Тесла, разиличных высоковольтных импульсных установок, мощных лазеров и други устройств. Устройство таких конденсаторов отличается от устройства обычных низковольтных конденсаторов. Поскольку они должны работать в высоковольтных цепях, они довольно редки и труднодоставаемы.

Искать их в обычных магазинах радиодеталей совершенно нет смысла, лучше место для поиска это радиорынки, частные объявления в интернете и магазины для промышленного оборудования.

Высоковольтные конденсаторы бывают разных типов и марок, ниже представлен список некоторых ВВ конденсаторов. Все они отечественного производства, современные аналоги стоят гораздо дороже.

К75-25 — импульсные конденсаторы с рабочими напряжениями от 10 до 50 кВ, емкостью от 2 до 25 нФ их корпус сход с K75-15, они работают с напряжением с частотой до 500 Гц, что делает возможным их использование в качестве конденсаторов ММС в искровой катушки Тесла.

K15-4 — Зеленыекерамические конденсотары «гриншиты» встречаются в страх телевизорах на лампах, в умножителях напряжения. Такие конденсторы имеют не большую емкость и большое рабочее напряжение. Такие конденстаоры не любят высокочастотные цепи, имеют большое значение TKE, с увеличением температуры емкость сильно меняется. Такие конденсаторы очень не любят высокчастотные цепи. Они довольно неплохо работают в генераторе Маркса.

K15-5 — Небольшие плоские керамические конденсаторы рыжего цвета. Которые постоянно выходят из строя, емкость постоянно меняется. Их можно использовать если только в высокочастотных фильтрах. Рабочее напряжение до 6,3 кВ. Их можно спокойно приобрести в магазинах радиотоваров. Их также можно использовать в генераторе Маркса.

К73-14 — Пленочные конденсаторы применяемые в цепях постоянного тока, рассчитаны на приличное напряжение в 25 кВ. Такие конденсаторы имеют хорошую емкость и больщую эквивалентную индуктивность, поэтому их нельзя приемнять в катушка Тесла по причине того что они быстро греются и дохнут. Они отлично подойдут для всевозможных умножителей напряжения и генераторах Маркса. Номиналы таких конденсаторов 16 кВ 2200 пФ, 25 кв 2200 пФ и др.

КВИ-3 — Дисковидные керамические конденсаторы, которые сейчас встречаются довольно редко. Часто использовались в искровой катушки Тесла. Но такие конденсаторы имеют очень большой минус — это их цена. Так как обкладки выполнены их серебра то конденсатор с большой емкостью будет стоить приличные деньги. Поэто вместо них начали использовать другие К75-25. А КВИ конденсаторы устанавливают в высоковольтные устройства в качестве фильтра ВЧ. КВИ кондесаторы встречаются следующих номиналах: 3300 пф 10 кВ, 4700 пФ 12 кВ, 6800 пФ 12 кВ. Конденстатор с емкостью 6800 пФ довольно дорогой, заводской такой будет стоить до 2000 рублей за 1 штуку.

К15У1 — эти конденсаторы по внешнему виду очень похожи на высоковольтные конденсаторы КВИ-3, но опытный радиолюбитель эти различия видит сразу. К15У1 имеют более сглаженную форму диска на краях. Также у таких конденсаторов намного больше разных форм и номиналов. Могут быть размеры как миниатюрные так и здоровые блины с ладонь.

К15У-2 — в отличии от предыдущего конденсатора, имеет форму не блина а трубки у которой концы утолщены. К15У отличаются от КВИ тем что они имеют нормированную реактивную мощность. Поэтому их можно использовать в ламповых катушказ Тесла. Такие конденсаторы применялись в передатчиках со значительными мощностями и другой подобной радиоаппаратуре. На радиорынках можно найти конденсаторы со следующими номиналами:

  • 470 пФ, 15 кВ, 40 кВАР;
  • 3300 пФ, 10 кВ, 10 кВАР.

ТГК1-У3 — По характеристикам схожы с К15У. Имеют форму «капли» и красный цвет. Конденсаторы очень редкие и большие. Наиболее распространены конденсаторы с номиналом 1000 пФ 8 кВ.

Микроволновые конденсаторы — такие конденсаторы устанавливаются в микроволновках где работают в паре с шифтером для МОТа. Эти конденсаторы масленные, они выпускаются с рабочим напряжением в 2000-2200 В и емкостью около 0,96-1,10 мкФ. Они отлично работают в качестве умножителя МОТа. Найти такие конденсаторы можно в старых сломаных микроволновках либо на радиорынке.

К41-1а — Обычные ни чем не приметные маслобумажные конденсаторы, есть экземпляры с большой емкостью и большим напряжением. Их модно применить, к примеру, в фильтре 50 Гц, либо в удвоителе напряжения. Найти им другое применение затруднительно. Емкость конденсаторов зависит от размеров.

КБГ — П — масляные конденсаторы, как можно было подумать что такие конденсаторы должны работать в фильтрах или в умножителях напряжения. Но такие конденсаторы,как показала практика, можно использовать в искровой катушке Тесла. Но нужно быть осторожным так как разрыв таких конденсаторов может привести к разбрызгиванию масла. Распространенные номиналы: 10 кВ, 0.1 мкФ; 5 кВ, 1 кмФ; 20 кВ, 0.1 мкФ.

К41И-7 — также как и предыдущий конденсатор он масленный, применяется для накачки лазеров. Имеет хороший номинал 5 кВ 100 мкФ, все такого конденсатора 12.5 кг. Рекомендуется заряжать такой конденсатор только до половины. Ток разряда таких конденсаторов 100 — 200 А.

К75-28 — схож с предыдущим конденсатором, отличается габаритами, он меньше по размерам и по весу. Можно встретить такие конденсаторы 3 кВ и емкостью 100 мкФ, ток разряда до 2000 А.

К75-40 — Импульсный конденсатор, также похож на К41И-7 но с лучшим разрядным током, уже порядка 10 кА и множество разных номиналов. Но эти высоковольтные конденсаторы встречаются редко и довольно дорогие.

К15-10 — Керамический импульсный конденсатор. Не расчитан на частотный режим. Пригоден для работы с импульсным током с частотой следования импульсов несколько десятков Герц. Отлично подойдут для сборки генератора Маркса. Рабочее напряжение до 50 кВ. При работе с напряжением более рабочей конденсатор нужно будет погрузить в бак с маслом, для того чтобы избежать пробоя по поверхности. Обкладки такого конденсатора выполнены из технического серебра.

Вакуумные конденсаторы — Могут быть как перменные так и постоянные. Их главное преимущество это отсутсвие диэлектрических потерь. Поэтому они могут работать при любых режимах и частотах при высоком напряжении. К минусам можно отнести их хрупкость так как имеем дело со стеклом и малую емкость. Самые оптимальные на мой взгляд это высоковольтные конденсаторы переменной емкости марки КП.

  • < Назад
  • Вперёд >

Добавить комментарий

Преимущества ОС-регулирования

Обратная связь при регулировании напряжения в ИС является важной опцией для импульсных стабилизаторов. Она позволяет поддерживать на выходе устройства напряжение стабильной величины, чутко следя за бросками напряжения и тока

В ИСН применяется широкополосная ОС (чем шире интервал частот, тем меньше уровень пульсации в результате).

Доступность на рынке радиодеталей комплектующих для построения ИСН даёт возможность собрать своими руками любую из схем импульсных стабилизаторов. Использование в них готовых стабилизаторов на интегральных микросхемах (ИМС) и ключей на полевых транзисторах делает устройство максимально компактным.

Преобразователь напряжения ПН-70

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью.

Вне зависимости от частоты следования вспышек света генератор работает непрерывно, расходуя большое количество энергии и разряжая батареи.

Рис. 14. Схема модифицированного преобразователя напряжения ПН-70.

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — ѴТЗ по схеме Дарлингтона.

Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением резистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя.

Когда напряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя. Транзистор ѴТ1 должен быть установлен на медном радиаторе размерами 50x22x0,5 мм.

Сравнение с линейным стабилизатором

Чтобы сравнить два принципа преобразования, нужно вспомнить, что линейные стабилизаторы (ЛС) – это обычно делитель напряжения. У него нестабильный потенциал подаётся на вход делителя, а стабильный – снимается со второго плеча (нижнего). Принцип стабилизации заключается в постоянном изменении сопротивления верхнего плеча схемы таким образом, чтобы на нижнем оно оставалось стабильным.

К сведению. Когда отношение Uвх/Uвых велико, то КПД линейного стабилизатора очень низкий. Это связано с потерями энергии на регулирующем резисторе. Он греется, оттого часть мощности на входе теряется.

У таких сборок есть свои плюсы, а именно: простота схемы, минимум элементов и неимение помех. По сравнению с линейными, импульсные стабилизаторы (ИС) сложнее, но работают стабильнее при правильно подобранной схеме.

В ИС могут возникать автоколебания, которые приводят к частичной неработоспособности или полному выходу преобразователя из строя. Это происходит в случае, когда импеданс источника Uвх превысит значение импеданса ИС, тогда при снижении Uвх повышается ток на входе.

Принцип работы

Любой высоковольтный энергоемкий накопитель заряда имеет такой же принцип работы, как и низковольтный аналог, состоящий из двух основных этапов:

  1. Зарядка – при подключении обкладок к источнику питания или электрической сети на них начинает накапливаться заряд. При этом напряжение на конденсаторе растет и спустя короткое время становится таким же, как и у источника питания. С этого момента накопитель считается заряженным
  2. Разрядка – если к заряженному накопителю подключить нагрузку, то через нее начнет протекать электрический ток. При этом напряжение на обкладках будет быстро падать, пока ни иссякнет совсем.

При несоблюдении номинальных характеристик подаваемого на конденсатор тока может произойти пробой диэлектрика, в результате чего произойдет короткое замыкание, и устройство замкнет накоротко.

Важно! Выражение «замкнуло накоротко» на языке электриков, электромонтажников значит, что произошло короткое замыкание

Фазосдвигающие

Данные устройства используются для подключения трехфазного электродвигателя к однофазной бытовой сети. Для этого подходит обычный не полярный (электролитический) конденсатор.

Расчет необходимой ёмкости пускового фазосдвигающего (Cф) конденсатора зависит от схемы (типа) подключения двигателя к сети:

  • При подключении по типу «треугольник» емкость фазосдвигающего накопителя рассчитывается по следующей формуле: Cф = 4800×I/U.
  • Для подключенного по схеме «звезда» ёмкость фазосдвигающего конденсатора находится по следующей формуле: Cф = 2800×I/U.


Фазосдвигающий конденсатор, подключенный к трехфазному двигателю

Подстроечные

Данные накопители заряда представляют собой устройства, емкость которых изменяется при разовой или периодической регулировке. В процессе работы оборудования изменение емкости таких устройств конструктивно невозможно.

Конструкция таких устройств включает в себя следующие элементы:

  • статор – неподвижная нижняя обкладка;
  • ротор – верхняя подвижная полукруглая обкладка;
  • ось – соединяющий статор и ротор небольшой штырек.

Настройка емкости происходит за счет изменения площади распложенных параллельно обкладок при помощи плоского шлица на оси. Применяют подстроечные высоковольтные конденсаторы в приемо-передающей радиоаппаратуре.

На заметку. Не следует путать подстроечный конденсатор с переменным – емкость последнего можно изменять в процессе работы оборудования.

Биполярные

Устройство данного вида представляет собой простой неполярный (однополярный) конденсатор, применяемый в электрических цепях, запитываемых как постоянным, так и переменным или пульсирующим сверхвысоким током.

Биполярный высоковольтный конденсатор

Конденсаторы для установок повышенной частоты

К данному виду относят силовые электрические конденсаторы для повышения потребления полезной мощности в электроустановках с частотой от 0,5 до 10 кГц со специальным охлаждением. Пакет приборов собирают из отдельных самостоятельных секций, соединенных между собой параллельно, либо, если необходимо, то последовательно, с одной стороны к обкладкам припаивают специальный змеевик охлаждения, представляющий собой изогнутую медную трубку, по которой во время работы устройства подается охлаждающая жидкость. Змеевик охлаждения используется в качестве токоподвода, другие обкладки секций с противоположной стороны пакета конденсаторов изолированы от корпуса и присоединены к токоподводам. Секции, соединенные параллельно, образуют ступени с самостоятельными выводами через фарфоровые изоляторы на крышку корпуса.

Конденсаторы для установок промышленной частоты

К данному виду относят устройства для увеличения коэффициента мощности в установках переменного тока с определенной, постоянной частотой 50 Гц. Такие приборы выполняют как для внутреннего, так и для применения вне помещения при температуре не более 50 °С. Они выполняются как в однофазном, так и трехфазном исполнении. При трехфазном исполнении силовой косинусный конденсатор соединяется в виде треугольника. Иногда применяют предохранитель для защиты от пробоя.

Автоматическое прерывание питания конденсаторов при перегрузке силовой сети по току за счет повышенного напряжения обеспечивает специальное электротоковое реле. Защиты от токов короткого замыкания добиваются за счет установки плавких предохранителей. В схемах управления для включения и отключения применяют магнитные пускатели большой величины, установки оснащаются возможностью регулировки и индикаторами рабочего состояния.

Силовые конденсаторы

Устройства, применяемые в силовых электрических сетях с высоким или низким напряжением, а также в установках с повышенной частотой. Силовые конденсаторы могут использоваться как самостоятельно, так и в сборе в батареи. В отличие от конденсаторов, используемых в радиоэлектронике, силовые имеют значительные вес и размеры, а также большую емкость и реактивную мощность. Исключением являются устройства применяемые для электроники управления в силовых сетях, так называемые конденсаторы для силовой электроники.

Фильтровые и импульсные конденсаторы

Фильтровые устройства предназначены для работы в контурах фильтров высокой частоты специализированных тяговых подстанций как внутри помещения, так и снаружи. Они работают при одновременном наложении напряжения постоянного и переменного тока частотой от 100 до 1600 Гц, при этом значение напряжения переменного тока не должно превышать соответственно 1 кВ. Данный вид также применяется для работы в преобразователях постоянного тока, содержащих импульсные тиристоры.

Фильтровые конденсаторы используют для сглаживания скачков переменной составляющей в устройствах выпрямления высокого напряжения в сети, а также в схемах с удвоенным напряжением в среде диэлектрического трансформаторного масла и в контурах фильтров высокой частоты тяговых подстанций.

В электроустановках, используемых для высоковольтных импульсных подстанций, а также установках, используемых для магнитной штамповки, сейсмической разведки и дроблении пород, используют импульсные силовые конденсаторы. Их применяют в электрофизических установках для создания и исследования высокотемпературной плазмы, а также для сверхсильных импульсных токов. Для создания мощных источников света импульсного характера, а также для исследования при помощи лазерных установок применяют, именно, импульсные силовые конденсаторы.

Особенность работы данных устройств — это медленно текущий заряжающий момент, и, наоборот, разряд происходит быстро, импульсно. Кроме таких конденсаторов применяют еще генераторы импульсных напряжений сети.

Генератор импульсных напряжений сети применяют в основном для электрогидравлических установок, использующих электрический разряд в технологических целях, обусловленными специальными условиями производства или технологического процесса. Такие генераторы имеют исполнение на напряжение сети 380, 400, 415, 440 В. Номинальное напряжение выхода составляет 50 кВ, полная выходная мощность 18 кВт, коэффициент реактивной мощности 0,73.

Генераторы напряжения импульсного характера выполняют из двух блоков заряжающего и высоковольтного отделения. Заряжающий блок включает в себя понизительный трансформатор и шкаф с преобразователем, содержащим емкостно-индуктивную составляющую. Высоковольтное отделение представлено шкафом с силовыми конденсаторами, защитным устройством и разрядником, а также обязательно присутствует разделительное заземление.

Основные характеристики конденсаторов высоковольтных импульсных

Подобные конденсаторы работают в режиме, который находится на гране короткого замыкания: колебательный разряд на малую индуктивность при частоте колебаний 104-107 Гц. К ним предъявляется требование: они должны запасать энергию, которую можно максимально запасти в единице объема. Энергия определяется рабочей напряженностью и диэлектрической проницаемостью изоляции. К основным факторам, которые ограничивают рабочую напряженность, относятся:

  • Тепловой режим импульсного конденсатора;
  • Кратковременная прочность изоляции
  • Разрушение диэлектрика частичными разрядами.

Если конденсатор работает в частотном режиме, то рабочая напряженность определяется тепловым пробоем конденсатора. Если же тепловой режим – не определяющий, тогда частичные разряды на закраинах секций и в толще диэлектрика будут определяющими. Напряжение, которое допускается при работе, определяется прочностью изоляции и процессами старения или длительностью прочности диэлектрика в режиме импульса. При этом основное значение имеет тип диэлектрика и режим, в котором работает конденсатор.

Основные схемы силовой части

В зависимости от назначения ИС, можно выделить три базовых модели его построения:

  • понижающая;
  • повышающая;
  • инвертирующая.

Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

  • тиристор;
  • транзистор (биполярный или полевой).

Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

Преобразователь с понижением напряжения

Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

Простейшая схема понижающего ИС

У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости

Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

Преобразователь с повышением напряжения

В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.


Повышающий ИС

Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

Инвертирующий преобразователь

Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.

Инвертирующий ИС

При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

Высоковольтные конденсаторы — крайне важные для большинства связанных с высоким напряжением проектов детали. Без них совершенно невозможно обойтись при построении, навскидку, катушки Тесла (ламповой или искровой), генератора Маркса, умножителя напряжения, импульсной установки, мощного лазера и прочая, и прочая. Поскольку конденсаторы для таких дел должны держать высокое напряжение, они довольно редки в природе и, как следствие, труднодоставаемы. По крайней мере просить их в магазинах вроде Чип-Дипа бесполезно, лучший вариант — искать на местном радиорынке или по объявлениям в интернете. Впрочем, это уже дело десятое, а вначале надо понять, какие они вообще из себя бывают и какие марки куда можно применить. Я составил небольшой обзор типов высоковольтных конденсаторов, наиболее актуальных для интересных высоковольтникам в целом и мне в частности задач, и притом не настолько редких, чтобы их было невозможно достать. Все конденсаторы — отечественного производства, все — советского изготовления (современные аналоги стоят неприличных сумм бабла). Конечно, некоторых тут пока что не описано, например, К15-11, или ИК (ИКЧ и других из этого семейства). Но как только удастся прибрать таковые к рукам, они тут, несомненно, окажутся. Итак.

1. К75-25. Импульсные конденсаторы с комбинированным диэлектриком. Наиболее часто встречающиеся напряжения — от 10 до 50 кВ, ёмкости — от 2-3 нФ до 25 нФ. Имеют корпус, идентичный К75-15, но вдесятеро меньшую ёмкость. Зато они пригодны для работы в частотном режиме до 500, что ли, герц, что позволяет совершенно спокойно использовать их в качестве конденсаторов ММС искровой катушки Тесла. Именно они стоят у меня в Blackmoon SGTC и Medium SGTC. Являются на настоящий момент наилучшими известными конденсаторами под это дело. Приобрести проще всего в интернете у Ежа или Ллевеллина (https://vk.com/hedgehog и https://vk.com/id33197668). Типичный номинал — 10 кВ 10 нФ.

2. К15-4, «гриншиты». Зелёные цилиндрические керамические конденсаторы небольшого размера, встречающиеся преимущественно в блоках строчной развёртки старых ламповых телевизоров, где они вместе с кенотроном образовывали небольшой умножитель напряжения. Характеризуются довольно большим рабочим напряжением и небольшой ёмкостью, полной нетерпимостью ВЧ-цепей, неприличным ТКЕ (от нагрева ёмкость может знатно уплыть) и злостной привычкой дохнуть без внешних симптомов. Должны быть избегаемы в любых схемах с ВЧ (например, ни в коем случае не следует их ставить в контур ламповой или искровой катушки!). Однако вполне неплохо себя показывают в генераторах Маркса, например. Два моих — MARX 2 и MARX 3 — собраны на К15-4. Типичный номинал — 30 кВ 470 пФ.

3. К15-5, «рыжее говно». Мелкие оранжевые керамические блины. Неспособны практически ни на что из интересующего высоковольтника: моментально дохнут, чуть что не по ним, ёмкость плавает… короче, лучше их нигде не применять, кроме, может, фильтров ВЧ. Однако они часто имеют довольно неплохое для такого размера рабочее напряжение до 6.3 кВ. И их можно-таки купить в магазине, а не на рынке. Но, повторюсь, лучше в эту сторону не глядеть, потому что возни с ними будет больше, чем толкового результата. Если их много и очень хочется применить — можно попробовать сделать небольшой маломощный генератор Маркса.

4. К73-14. Плёночные конденсаторы для цепей постоянного тока, рассчитанные на довольно неплохое напряжение — до 25 кВ. Имеют весьма большую электропрочность и приличную для своих размеров ёмкость, но из-за особенностей конструкции (скрученная в спираль плёнка) — огромную эквивалентную индуктивность (ESL), что делает их неприменимыми в катушках Тесла — греются и быстро умирают, а катушка работает с ними отвратительно. Однако они являются почти что идеальным решением для самодельных умножителей и декоративных генераторов Маркса. На них собран мой MARX 1. Типичные номиналы — 16 кВ 2200 пФ, 25 кВ 1000 пФ, 25 кВ 2200 пФ и пр.

5. КВИ-3. Весьма нынче редкие дисковидные керамические конденсаторы. Долгое время считались единственными достойными для установки в искровые катушки Тесла. К сожалению, из-за своей высокой цены (обкладки с содержанием серебра, однако) и не очень высокой ёмкости хорошая батарея их могла стоить диких денег. К счастью, им на замену нашлись К75-25, и теперь КВИ-3 осмысленно устанавливать в HV-девайсы разве что в качестве фильтрующих ВЧ. Типичные номиналы — 10 кВ 3300 пФ, 12 кВ 4700 пФ, 12 кВ 6800 пФ (последний наиболее редкие и дорогие, ок. 200 руб/шт если удаётся найти на рынке и до 1500-2000 руб/шт заводские).

6. К15У1 и 2. К15У-1 внешне очень похожи на КВИ-3, но опытный глаз может заметить различия. Во-первых, К15У-1 имеют намного более гладкую фаску на краях диска. Во-вторых, разнообразие их форм и номиналов намного больше, чем у КВИ, встречаются как миниатюрные, так и блины в две ладони размером. В-третьих, некоторые выпуски КВИ-3 бывают красного цвета, а К15У — синего.

К15У-2 имеют вид не блина, а трубки с утолщёнными концами (не представленные здесь К15У-3 имеют вид «волдыря»). В отличие от КВИ, К15У имеют нормированную реактивную мощность (обычно единицы и десятки кВАР), что позволяет использовать их в ламповых катушках Тесла, где КВИ частенько перегреваются. Именно К15У-1 стоит в моей ЛКТ на ГК-71. Изначально применялись в радиоаппаратуре, в мощных передатчиках и тому подобных конструкциях. Новые экземпляры стоят совершенно чумовые суммы, особенно крупных номиналов. На рынке же можно встретить за копейки. Типичные номиналы разнообразны, например — 15 кВ 470 пФ 40 кВАР, или 10 кВ 3300 пФ 10 кВАР. Их старшие родичи, кстати, — К15-11, но навряд ли простой тесластроитель с ними столкнётся, не зная, что они такое, ибо ещё более редки и совсем дороги.

6. ТГК1-У3. «Волдырь». Имеет идентичные К15У характеристики, за исключением красного цвета. Штука относительно редкая и громоздкая, может успешно работать в ВТТЦ или индукционном нагревателе. Типичный номинал — 8 кВ 1000 пФ.

7. Микроволновочные масляные конденсаторы. Эти серебристые штуки стоят в микроволновках, где работают в составе шифтера для МОТа. Все они имеют рабочее напряжение 2000-2200 вольт и ёмкость около 0.96-1.10 мкФ. Очень хорошо пригодны именно в своей штатной роли кондёров умножителя МОТа, особенно, например, для ламповых катушек. Отыскиваются в старых микроволновках и на радиорынках.

8. К41-1а. Довольно бестолковые маслобумажные конденсаторы. Ни на что конкретное не годны, но бывают довольно больших напряжений и ёмкостей. Их можно применить в фильтре 50 Гц переменки, или в удвоителе напряжения, ни на что другое, если честно, они не очень годны. Точно не стоит пытаться ставить их в теслу. Типичные номиналы зависят от размеров, например, 4 кВ 1 мкФ.

9. КБГ-П. Масляные конденсаторы (в больших даже слышно его булькание). Казалось бы, их участь схожа с таковой у К41-1а: служить в фильтрах и в крайнем случае умножителях, но практика показала удивительную вещь: КБГ-П живут и работают в контурах искровой катушки Тесла! С большим КБГ-П 30 кВ 0.1 мкФ я получил шикарные результаты на своей Blackmoon SGTC. Впрочем, надо заметить, что последствия длительной работы их в этом назначении непредсказуемы и могут быть фатальны (вплоть до разрыва кондёра и разлетания горящего масла вокруг). Использовать с осторожностью, на свой страх и риск. Типичные номиналы: 10 кВ 0.1 мкФ, 5 кВ 1 мкф, 20 кВ 0.1 мкФ.

10. К41И-7. Масляные конденсаторы для накачки мощных лазеров (и чего угодно ещё). Имеют шикарный номинал — 5 кВ 100 мкФ, что даёт на аж 1250 джоулей энергии на заряженный конденсатор, или массовую плотность энергии 100 Дж/кг (вес одного кондёра — 12.5 кг). По неизвестным причинам встречаются в природе многократно чаще любых других аналогичных кондёров (типа К75-40 или К75-28), что даёт возможности по накоплению большого количества их и применения по назначению: для накачки лазера. Если нет лазера — можно сделать импульсовку. Правда, у них заявлен весьма низкий разрядный ток, типа 100-200 ампер. А ещё рекомендуется заряжать максимум до половины, может 2/3 штатной максимальной напруги. Но нам же на указания даташитов плевать, поэтому смело заряжаем до 5 кВ и разряжаем отвёрткой, и наплевать, что проживёт в таком режиме кондёр считанные тысячи разрядов. Типичный номинал один — 5 кВ 100 мкФ.

11. К75-28. Относительно них верно всё то же, что и насчёт К41И-7, только они поменьше размером и весом, имеют номинал в 3 кВ 100 мкФ (и 450 джоулей/шт соответственно), разрядный ток до 2 кА, и встречаются пореже. На них сделана моя импульсовка-I на 1.3 кДж.

12. К75-40. Импульсные конденсаторы. Опять же верно то же, что и для К41И-7, но эти имеют намного лучше разрядный ток (десятки кА) и массу разных номиналов: например, здесь представлены имеющиеся у меня 2.5 кВ 20 мкФ. Плотность энергии в несколько раз выше чем у тех же К41-1А или КБГ-П. К сожалению, довольно редки и дороги.

13. К15-10. Импульсные керамические конденсаторы. Не рассчитаны в отличие от похожих на них К15У и КВИ (визуальное отличие — большие размеры и характерный белый цвет, в отличие от серого, синего или красного у последних) на частотный режим, только на импульсный с частотой повторений импульсов не более нескольких [десятков] герц. Это делает их непригодными для теслы (не стоит даже пытаться), но зато они одни из лучших для генератора Маркса. Большое рабочее напряжение (до 50 кВ), приличная ёмкость и возможность коаксиального монтажа конструкции. Только надо помнить, что на предельной рабочей напруге они потребуют окунания в бачок с маслом во избежание пробоя по поверхности. Обкладки, кстати, из технического серебра, и его там довольно много

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]