Каждое измерение — это сравнение измеряемой величины с другой, однородной с ней величиной, которую считают единичной. Теоретически единицы для всех величин в физике можно выбрать независимыми друг от друга. Но это крайне неудобно, так как для каждой величины следовало бы ввести свой эталон. Кроме этого во всех физических уравнениях, которые отображают связь между разными величинами, возникли бы числовые коэффициенты.
Основная особенность используемых в настоящее время систем единиц состоит в том, что между единицами разных величин имеются определенные соотношения. Эти соотношения установлены теми физическими законами (определениями), которыми связываются между собой измеряемые величины. Так, единица скорости выбрана таким образом, что она выражается через единицы расстояния и времени. При выборе единиц скорости используется определение скорости. Единицу силы, например, устанавливают при помощи второго закона Ньютона.
При построении определенной системы единиц, выбирают несколько физических величин, единицы которых устанавливают независимо друг от друга. Единицы таких величин называют основными. Единицы остальных величин выражают через основные, их называют производными.
Таблица единиц измерения «Пространство и время»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Длина | l, s, d | метр | м | Протяжённость объекта в одном измерении. | |
Площадь | S | квадратный метр | м2 | Протяженность объекта в двух измерениях. | |
Объем, вместимость | V | кубический метр | м3 | Протяжённость объекта в трёх измерениях. | экстенсивная величина |
Время | t | секунда | с | Продолжительность события. | |
Плоский угол | α, φ | радиан | рад | Величина изменения направления. | |
Телесный угол | α, β, γ | стерадиан | ср | Часть пространства | |
Линейная скорость | v | метр в секунду | м/с | Быстрота изменения координат тела. | вектор |
Линейное ускорение | a, w | метр в секунду в квадрате | м/с2 | Быстрота изменения скорости объекта. | вектор |
Угловая скорость | ω | радиан в секунду | рад/с = (с−1) | Скорость изменения угла. | |
Угловое ускорение | ε | радиан на секунду в квадрате | рад/с2 = (с−2) | Быстрота изменения угловой скорости |
Таблица единиц измерения «Механика»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Масса | m | килограмм | кг | Величина, определяющая инерционные и гравитационные свойства тел. | экстенсивная величина |
Плотность | ρ | килограмм на кубический метр | кг/м3 | Масса на единицу объёма. | интенсивная величина |
Поверхностная плотность | ρA | Масса на единицу площади. | кг/м2 | Отношение массы тела к площади его поверхности | |
Линейная плотность | ρl | Масса на единицу длины. | кг/м | Отношение массы тела к его линейному параметру | |
Удельный объем | v | кубический метр на килограмм | м3/кг | Объём, занимаемый единицей массы вещества | |
Массовый расход | Qm | килограмм в секунду | кг/с | Масса вещества, которая проходит через заданную площадь поперечного сечения потока за единицу времени | |
Объемный расход | Qv | кубический метр в секунду | м3/с | Объёмный расход жидкости или газа | |
Импульс | P | килограмм-метр в секунду | кг•м/с | Произведение массы и скорости тела. | экстенсивная, сохраняющаяся величина |
Момент импульса | L | килограмм-метр в квадрате в секунду | кг•м2/с | Мера вращения объекта. | сохраняющаяся величина |
Момент инерции | J | килограмм-метр в квадрате | кг•м2 | Мера инертности объекта при вращении. | тензорная величина |
Сила, вес | F, Q | ньютон | Н | Действующая на объект внешняя причина ускорения. | вектор |
Момент силы | M | ньютон-метр | Н•м = (кг·м2/с2) | Произведение силы на длину перпендикуляра, опущенного из точки на линию действия силы. | вектор |
Импульс силы | I | ньютон-секунда | Н•с | Произведение силы на время её действия | вектор |
Давление, механическое напряжение | p, σ | паскаль | Па = (кг/(м·с2)) | Сила, приходящаяся на единицу площади. | интенсивная величина |
Работа | A | джоуль | Дж = (кг·м2/с2) | Скалярное произведение силы и перемещения. | скаляр |
Энергия | E, U | джоуль | Дж = (кг·м2/с2) | Способность тела или системы совершать работу. | экстенсивная, сохраняющаяся величина, скаляр |
Мощность | N | ватт | Вт = (кг·м2/с3) | Скорость изменения энергии. |
Что такое сила?
Если тело ускоряется то на него что-то действует. А как найти это «что-то»? Например, что за силы действуют на тело вблизи поверхности земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус земли ${\large R}$, почти независящая от высоты; она равна
${\large F = \dfrac {G \cdot m \cdot M}{R^2} = m \cdot g }$
где
${\large g = \dfrac {G \cdot M}{R^2} }$
так называемое ускорение силы тяжести. В горизонтальном направлении тело будет двигаться с постоянной скоростью, однако движение в вертикальном направлении по второму закону Ньютона:
${\large m \cdot g = m \cdot \left ( \dfrac {d^2 \cdot x}{d \cdot t^2} \right ) }$
после сокращения ${\large m}$ получаем, что ускорение в направлении ${\large x}$ постоянно и равно ${\large g}$. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями
${\large v_x = v_0 + g \cdot t}$
${\large x = x_0 + x_0 \cdot t + \dfrac {1}{2} \cdot g \cdot t^2}$
Таблица единиц измерения «Периодические явления, колебания и волны»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Период | T | секунда | с | Промежуток времени, за который система совершает одно полное колебание | |
Частота периодического процесса | v, f | герц | Гц = (с−1) | Число повторений события за единицу времени. | |
Циклическая (круговая) частота | ω | радиан в секунду | рад/с | Циклическая частота электромагнитных колебаний в колебательном контуре. | |
Частота вращения | n | секунда в минус первой степени | с-1 | Периодический процесс, равный числу полных циклов, совершённых за единицу времени. | |
Длина волны | λ | метр | м | Расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. | |
Волновое число | k | метр в минус первой степени | м-1 | Пространственная частота волны |
Некоторые практические вопросы и конструкции катушек индуктивности
На практике применяют различные конструкции катушек индуктивности. В зависимости от назначения и области применения устройства можно выполнить различным способом, но надо учитывать эффекты, возникающие в реальных катушках.
Добротность катушки индуктивности
У реальной катушки, кроме индуктивности, есть ещё несколько параметров, и один из самых важных – добротность. Эта величина определяет потери в катушке и зависит от:
- омических потерь в проводе обмотки (чем больше сопротивление, тем ниже добротность);
- диэлектрических потерь в изоляции провода и каркасе обмотки;
- потерь в экране;
- потерь в сердечнике.
Все эти величины определяют сопротивление потерь, а добротностью называют безразмерную величину, равную Q=ωL/Rпотерь, где:
- ω = 2*π*F – круговая частота;
- L – индуктивность;
- ωL – реактивное сопротивление катушки.
Таблица единиц измерения «Тепловые явления»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Температура | T | кельвин | К | Средняя кинетическая энергия частиц объекта. | Интенсивная величина |
Температурный коэффициент | α | кельвин в минус первой степени | К-1 | Зависимость электрического сопротивления от температуры | |
Температурный градиент | gradT | кельвин на метр | К/м | Изменение температуры на единицу длины в направлении распространения теплоты. | |
Теплота (количество теплоты) | Q | джоуль | Дж = (кг·м2/с2) | Энергия, передаваемая от одного тела к другому немеханическим путём | |
Удельная теплота | q | джоуль на килограмм | Дж/кг | Кол-во теплоты, которое необходимо подвести к веществу, взятому при температуре плавления, чтобы расплавить его. | |
Теплоемкость | C | джоуль на кельвин | Дж/К | Кол-во теплоты, поглощаемой (выделяемой) телом в процессе нагревания. | |
Удельная теплоемкость | c | джоуль на килограмм-кельвин | Дж/(кг•К) | Теплоёмкость единичной массы вещества. | |
Энтропия | S | джоуль на килограмм | Дж/кг | Мера необратимого рассеивания энергии или бесполезности энергии. |
Примеры типичных токов
Значения силы тока можно прочитать на информационных табличках на электроприёмниках или в руководствах к этим устройствам. В таблице ниже приведены типичные значения электрических токов для различных электроприёмников.
Потребитель | Сила тока |
Электрический термометр | около 0,00001 мА |
Наушники | 1 мА |
Лампа накаливания 60 Вт | 0,26 А |
Лампа накаливания 75 Вт | 0,33 А |
Холодильник | 0,8 А |
Зарядное устройство для смартфона (быстрая зарядка) | 2 А |
Персональный компьютер | 0,87 — 2,6 A |
Микроволновая печь | 3,5 А |
Пылесос | 4 — 9 А |
Стиральная машина | 6 — 10 А |
Электроплавильная печь | 15000 А |
Грозовая молния | 10 000 — 100 000 А (в среднем 36 000 А) |
Таблица единиц измерения «Молекулярная физика»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Количество вещества | v, n | моль | моль | Количество однотипных структурных единиц, из которых состоит вещество. | Экстенсивная величина |
Молярная масса | M, μ | килограмм на моль | кг/моль | Отношение массы вещества к количеству молей этого вещества. | |
Молярная энергия | Hмол | джоуль на моль | Дж/моль | Энергия термодинамической системы. | |
Молярная теплоемкость | смол | джоуль на моль-кельвин | Дж/(моль•К) | Теплоёмкость одного моля вещества. | |
Концентрация молекул | c, n | метр в минус третьей степени | м-3 | Число молекул, содержащихся в единице объема. | |
Массовая концентрация | ρ | килограмм на кубический метр | кг/м3 | Отношение массы компонента, содержащегося в смеси, к объёму смеси. | |
Молярная концентрация | смол | моль на кубический метр | моль/м3 | Содержание компонента относительно всей смеси. | |
Подвижность ионов | В, μ | квадратный метр на вольт-секунду | м2/(В•с) | Коэффициент пропорциональности между дрейфовой скоростью носителей и приложенным внешним электрическим полем. |
От чего зависит напряжение
Единица измерения силы тока
Фиксируемый на участке электрической цепи показатель напряжения зависит от ряда факторов, например, от подсоединенной нагрузки (сопротивления). Также оказывают влияние характеристики вещества, из которого сделан проводниковый элемент, температура окружающего воздуха и самих компонентов сети.
Эффект Джозефсона
Так называется феномен сверхпроводящего тока, проходящего через слой диэлектрического материала малой толщины, изолирующий один сверхпроводящий предмет от другого. В научной работе деятеля, чьим именем назван эффект, было высказано предположение о том, что данное явление наблюдается только при использовании супертонкого слоя (значительно уступающего длине сверхпроводящей когерентности). Более поздние опыты продемонстрировали, что оно проявляет себя и при использовании куда более толстых слоев.
Применение данного феномена позволит производить высокоточные замеры напряжения, а также магнитных полей. Последнее делается возможным в силу огромной зависимости электротока, критичного для используемого в интерферометре соединения, от внешнего магнитного поля. Когда в джозефсонском переходе поддерживается константное напряжение, он может выступать в качестве генератора электромагнитного волнового излучения. Можно организовать и установку с противоположным, поглощающим эффектом. При этом как генерация, так и прием способны функционировать в частотном диапазоне, недоступном иным средствам.
Также ведутся исследования рассматриваемого эффекта и основанных на нем явлений переноса магнитного поля для передачи и накопления данных (квантовые компьютеры). Первый экспериментальный процессор такого типа был спроектирован японскими инженерами. В 2014 году работники физфака МГУ спроектировали микросхему для компьютера с использованием свойств сверхпроводников и данного эффекта.
Таблица единиц измерения «Электричество и магнетизм»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Сила тока | I | ампер | А | Протекающий в единицу времени заряд. | |
Плотность тока | j | ампер на квадратный метр | А/м2 | Сила электрического тока, протекающего через элемент поверхности единичной площади. | Векторная величина |
Электрический заряд | Q, q | кулон | Кл = (А·с) | Способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. | экстенсивная, сохраняющаяся величина |
Электрический дипольный момент | p | кулон-метр | Кл•м | Электрические свойства системы заряженных частиц в смысле создаваемого ею поля и действия на неё внешних полей. | |
Поляризованность | P | кулон на квадратный метр | Кл/м2 | Процессы и состояния, связанные с разделением каких-либо объектов, преимущественно в пространстве. | |
Напряжение | U | вольт | В | Изменение потенциальной энергии, приходящееся на единицу заряда. | скаляр |
Потенциал, ЭДС | φ, σ | вольт | В | Работа сторонних сил (некулоновских) по перемещению заряда. | |
Напряженность электрического поля | E | вольт на метр | В/м | Отношение силы F, действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда q | |
Электрическая емкость | C | фарад | Ф | Мера способности проводника накапливать электрический заряд | |
Электрическое сопротивление | R, r | ом | Ом = (м2·кг/(с3·А2)) | сопротивление объекта прохождению электрического тока | |
Удельное электрическое сопротивление | ρ | ом-метр | Ом•м | Способность материала препятствовать прохождению электрического тока | |
Электрическая проводимость | G | сименс | См | Способность тела (среды) проводить электрический ток | |
Магнитная индукция | B | тесла | Тл | Векторная величина, являющаяся силовой характеристикой магнитного поля | Векторная величина |
Магнитный поток | Ф | вебер | Вб = (кг/(с2·А)) | Величина, учитывающая интенсивность магнитного поля и занимаемую им область. | |
Напряженность магнитного поля | H | ампер на метр | А/м | Разность вектора магнитной индукции B и вектора намагниченности M | Векторная величина |
Магнитный момент | pm | ампер-квадратный метр | А•м2 | Величина, характеризующая магнитные свойства вещества | |
Намагниченность | J | ампер на метр | А/м | Величина, характеризующая магнитное состояние макроскопического физического тела. | векторная величина |
Индуктивность | L | генри | Гн | Коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и полным магнитным потоком | |
Электромагнитная энергия | N | джоуль | Дж = (кг·м2/с2) | Энергия, заключенная в электромагнитном поле | |
Объемная плотность энергии | w | джоуль на кубический метр | Дж/м3 | Энергия электрического поля конденсатора | |
Активная мощность | P | ватт | Вт | Мощность в цепи переменного тока | |
Реактивная мощность | Q | вар | вар | Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока | |
Полная мощность | S | ватт-ампер | Вт•А | Суммарная мощность с учетом активной и реактивной ее составляющих, а также отклонения формы тока и напряжения от гармонической |
Момент силы
Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная. В рамках нашей задачи, это определение можно упростить до следующего: моментом силы ${\large \overrightarrow{F}}$, приложенной к точке с координатой ${\large x_F}$, относительно оси, расположенной в точке ${\large x_0}$ называется скалярная величина, равная произведению модуля силы ${\large \overrightarrow{F}}$, на плечо силы — ${\large \left | x_F — x_0 \right |}$. А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.
Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю).
Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. 2, находится в равновесии. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно. На рисунке также присутствуют силы ${\large \overrightarrow{N_{1}^{gr}},\ \overrightarrow{N_2^{gr}}}$. Эти силы приложены к грузам, и согласно 3-му закону Ньютона
${\large \overrightarrow{N_{1}} = — \overrightarrow{N_{1}^{gr}}}$
${\large \overrightarrow{N_{2}} = — \overrightarrow{N_{2}^{gr}}}$
Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):
${\large N \cdot l_1 — N_2 \cdot \left ( l_1 +l_2 \right ) = 0}$
Обратите внимание, что в уравнение не вошёл момент силы ${\large \overrightarrow{N_1}}$, поскольку плечо этой силы относительно рассматриваемой оси равно ${\large 0}$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С, то условие равенства моментов сил будет выглядеть так:
${\large N_1 \cdot l_1 — N_2 \cdot l_2 = 0}$
Можно показать, что с математической точки зрения два последних уравнения эквивалентны.
Таблица единиц измерения «Оптика, электромагнитное излучение»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Сила света | J, I | кандела | кд | Количество световой энергии, излучаемой в заданном направлении в единицу времени. | Световая, экстенсивная величина |
Световой поток | Ф | люмен | лм | Физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения | |
Световая энергия | Q | люмен-секунда | лм•с | Физическая величина, характеризует способность энергии, переносимой светом, вызывать у человека зрительные ощущения | |
Освещенность | E | люкс | лк | Отношение светового потока, падающего на малый участок поверхности, к его площади. | |
Светимость | M | люмен на квадратный метр | лм/м2 | Световая величина, представляющая собой световой поток | |
Яркость | L, B | кандела на квадратный метр | кд/м2 | Сила света, излучаемая единицей площади поверхности в определенном направлении | |
Энергия излучения | E, W | джоуль | Дж = (кг·м2/с2) | Энергия, переносимая оптическим излучением |
Определение величины напряжения
Выполняя электромонтажные работы, специалист сталкивается с разными типами напряжения. Например, розетки в квартирах и частных домах являются источниками переменного напряжения. Оно может быть понижено или повышено трансформатором, выпрямлено специальным устройством. Измерение напряжения трения производят в лабораторных условиях электрохимическим методом. Мастеру нужно знать об особенностях измерения разных видов напряжения.
Постоянное напряжение
Его можно измерить, используя магнитоэлектрические устройства. Сейчас в продаже можно найти высокоточные приборы, оснащенные цифровым дисплеем. Проще всего непосредственно подключить устройство к участку, на котором нужно провести измерения. При этом необходимо соблюдать следующие правила:
- Предельное значение должно превышать предполагаемый максимум. В случае, когда измерительные работы выполняются без знания этого параметра, полагается установить максимальный предел и постепенно снижать его.
- Учитывать полярность подсоединения. В противном случае у стрелочного прибора указатель наклонится в противоположную сторону, у цифрового – на экране высветится отрицательное число.
Лабораторный вольтметр
Переменное напряжение
В этом случае в ход идут измерительные приборы разных видов, за исключением магнитоэлектрических. Работают с такими аппаратами только посредством подключения к выходу выпрямителя.
Таблица единиц измерения «Акустика»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Звуковое давление | p | паскаль | Па | Переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны | |
Объемная скорость | c, V | кубический метр в секунду | м3/с | Отношение объема сырья, подаваемого в реактор в час к объему катализатора | |
Скорость звука | v, u | метр в секунду | м/с | Скорость распространения упругих волн в среде | |
Интенсивность звука | l | ватт на квадратный метр | Вт/м2 | Величина, характеризующая мощность, переносимую звуковой волной в направлении распространения | скалярная физическая величина |
Акустическое сопротивление | Za, Ra | паскаль-секунда на кубический метр | Па•с/м3 | Отношение амплитуды звукового давления в среде к колебательной скорости её частиц при прохождении через среду звуковой волны | |
Механическое сопротивление | Rm | ньютон-секунда на метр | Н•с/м | Указывает силу, необходимую для движения тела при каждой частоте |
Таблица единиц измерения «Атомная и ядерная физика. Радиоактивность»
Физическая величина | Символ | Единица измерения физической величины | Ед. изм. физ. вел. | Описание | Примечания |
Масса (масса покоя) | m | килограмм | кг | Масса объекта, находящегося в состоянии покоя. | |
Дефект массы | Δ | килограмм | кг | Величина, выражающая влияние внутренних взаимодействий на массу составной частицы | |
Элементарный электрический заряд | e | кулон | Кл | Минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц | |
Энергия связи | Eсв | джоуль | Дж = (кг·м2/с2) | Разность между энергией состояния, в котором составляющие части системы бесконечно удалены | |
Период полураспада, среднее время жизни | T, τ | секунда | с | Время, в течение которого система распадается в примерном отношении 1/2 | |
Эффективное сечение | σ | квадратный метр | м2 | Величина, характеризующая вероятность взаимодействия элементарной частицы с атомным ядром или другой частицей | |
Активность нуклида | A | беккерель | Бк | Величина, равная отношению общего числа распадов радиоактивных ядер нуклида в источнике ко времени распада | |
Энергия ионизирующего излучения | E,W | джоуль | Дж = (кг·м2/с2) | Вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц | |
Поглощенная доза ионизирующего излучения | Д | грей | Гр | Доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоул | |
Эквивалентная доза ионизирующего излучения | H, Дэк | зиверт | Зв | Поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества | |
Экспозиционная доза рентгеновского и гамма-излучения | Х | кулон на килограмм | Кл/кг | отношение суммарного электрического заряда ионов одного знака от внешнего гамма-излучения |
Допустимые дозы радиации
- допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем
0,57 мкЗв/час - предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является
1 мЗв/год
В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час
Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.