Электрическое напряжение. Определение, виды, единицы измерения


4.1.3. Виды входов вольтметров.

Существует два вида входа вольтметра:

открытый

– вольтметр реагирует на весь сигнал U(t) (постоянную и переменную составляющую);

закрытый

— вольтметр реагирует только на переменную составляющую сигнала ;

Рисунок 4.3

Рисунок 4.2

Вольтметр с закрытым входом (рисунок 4.3) отличается от вольтметра с открытым входом (рисунок 4.2) тем, что у него во входной цепи включен разделительный конденсатор, который не пропускает постоянную составляющую сигнала. На рисунке 4.4 показаны временные диаграммы сигнала U(t)

, и его переменной составляющей.

Вольтметр с закрытым входом измеряет параметры только переменной составляющей сигнала . Для определения параметров напряжения переменной составляющей сигнала , ,
,
нужно в формулы 4.1 ¸ 4.4 подставить аналитическое выражение переменной составляющей сигнала , которое легко найти, вычтя из сигнала среднее значение напряжения
Uср
:

;

(4.11)

Основные единицы в системе SI Таблица 1.1

Величина длина масса время эл. ток термодин. температура сила света Количество вещества
Наименование метр килограмм секунда ампер кельвин кандела моль
обозначение, рус.

международное

м кг с А К св моль
m kg s A K cd mol

Приложение 1.2. Кратные и дольные единицы

4.1.4. О градуировке электронных вольтметров.

Из изложенного выше следует, что для измерения разных параметров сигнала применяют различные вольтметры, которые реагируют либо на пиковое, либо на средневыпрямленное, либо на среднеквадратическое значения напряжения измеряемого сигнала. Вид измеряемого параметра определяется типом применяемого в вольтметре преобразователя. При измерении пикового значения используют вольтметр с пиковым преобразователем, для измерения средневыпрямленного значения используют вольтметр с преобразователем средневыпрямленных значений, а для среднеквадратического значения используют вольтметр с квадратичным преобразователем. Тем не менее, шкалы большинства электронных вольтметров переменного тока градуируют, как правило, в среднеквадратических значениях напряжения гармонического сигнала (синусоидальной формы). В указанном случае только показания вольтметра с преобразователем среднеквадратического значения равны измеряемому параметру для любой формы измеряемого сигнала. Показания вольтметров с другими типами преобразователей определяются соотношением:

UVi = Cгр
i×Ux
;

(4.12)

где UVi

показание соответствующего вольтметра;
Cгрi
– градуировочный коэффициент этого вольтметра;
Ux
– параметр напряжения, на который реагирует этот вольтметр.

Таблица 4.2

п/п

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы.

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

4.1.5. Методическая погрешность при измерении напряжения.

При измерении напряжения вольтметр подключают к исследуемой цепи. Если вольтметр имеет бесконечно большое входное сопротивление, то режим работы исследуемой цепи не нарушается и показание вольтметра будет верно отражать параметры напряжения исследуемой цепи. Реальные вольтметры имеют конечное значение входного сопротивления ZV

, поэтому показание реального вольтметра будет отличаться от идеального. Разница между показаниями реального и идеального вольтметров является методической погрешностью измерения напряжения вольтметром. На рисунке 4.5 приведена эквивалентная схема измерения напряжения реальным вольтметром
V.

Кратные единицы Таблица 1.2

Множитель 1018 1015 1012 109 106 103 102 101
Наименование экса пета тера гига мега кило гекто дека
Обозначение, рус.

международное

Э П Т Г М к г да
E P T G M k h da

Эквивалентная схема

Zi

– комплексное внутреннее сопротивление источника сигнала;

ZV

– комплексное входное сопротивление вольтметра.

Исследуемая цепь представлена эквивалентным источником с внутренним сопротивлением Zi

и ЭДС
Е.
У идеального вольтметра ZV

®
¥
. В этом случае показание вольтметра равно ЭДС источника
Е
.

Показание реального вольтметра UV

равно падению напряжения на сопротивлении
ZV
;

(4.11)

.

Отсюда можно найти методическую погрешность измерения напряжения:

DE
=UVE
методическая погрешность может быть как положительной, так и отрицательной, так как Zi

может носить индуктивный характер, а
ZV
– емкостной, поэтому на высокой частоте возможен резонанс и тогда
UV> Е.
Относительная погрешность:

Объяснение простыми словами

Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.

Общепринятое определение термина «электрическое напряжение».

Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.

Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.

Есть другое определение (из учебника по физике 8 класса):

Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.

Сравнение с использованием модели протекания воды.

Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.


Электрическое напряжение — сравнение с использованием модели протекания воды

В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока
    называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

\(e={\rm E}_{m} \cdot \sin \omega \cdot t,\)

где \({\rm E}_{m} =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R

, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

\(i=\dfrac{e}{R} =\dfrac{B \cdot S \cdot \omega }{R} \cdot \sin \omega \cdot t = I_{m} \cdot \sin \omega \cdot t,\)

где \(I_{m} = \dfrac{B\cdot S\cdot \omega }{R}\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор
    — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь
    — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками
    — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Рис. 1
Неподвижная часть генератора называется статором

, а подвижная —
ротором
. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории

. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S

вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec{B}\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec{B}\) и нормали к плоскости рамки \(\vec{n}\) меняется со временем по линейному закону. Если в момент времени t

= 0 угол α0 = 0 (см. рис. 1), то

\(\alpha = \omega \cdot t = 2\pi \cdot \nu \cdot t,\)

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

\(\Phi \left(t\right)=B\cdot S\cdot \cos \alpha =B\cdot S\cdot \cos \omega \cdot t.\)

Тогда согласно закону Фарадея индуцируется ЭДС индукции

\(e=-\Phi ‘(t)=B\cdot S\cdot \omega \cdot \sin \omega \cdot t = {\rm E}_{m} \cdot \sin \omega \cdot t.\)

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]