В чем разница между сопротивлением и проводимостью?
Сопротивление, по определению, является мерой «трения», которое компонент представляет для прохождения через него тока. Сопротивление обозначается заглавной буквой «R» и измеряется в единицах «Ом». Однако мы также можем думать об этом электрическом свойстве с обратной ему точки зрения: насколько легко току течь через компонент, а не насколько трудно.
Если сопротивление – это термин, которое мы используем для обозначения меры того, насколько трудно току течь, то хорошим термином, чтобы выразить, насколько легко ток течет, будет проводимость. Математически проводимость – это величина, обратная сопротивлению:
\[проводимость = \frac{1}{сопротивление}\]
Чем больше сопротивление, тем меньше проводимость; и наоборот.
Это должно быть интуитивно понятно, потому что сопротивление и проводимость – противоположные способы обозначения одного и того же важного электрического свойства.
Если сравнивать сопротивления двух компонентов и обнаружится, что компонент «A» имеет сопротивление вдвое меньше сопротивления компонента «B», то в качестве альтернативы мы могли бы выразить это соотношение, сказав, что компонент «A» в два раза более проводящий, чем компонент «B». Если компонент «A» имеет сопротивление, равное только одной трети от сопротивления компонента «B», то мы можем сказать, что он в три раза более проводящий, чем компонент «B», и так далее.
Электрическое сопротивление проводника. Электрическая проводимость
Всякое тело оказывает прохождению электрического тока определенное противодействие. Например, при движении электронов по проводнику они будут сталкиваться с атомами и молекулами вещества, отдавая, им часть своей энергии. Чем больше таких столкновений, тем больше величина противодействия, оказываемого телом движению электрона, и, следовательно, тем меньше ток в проводнике.
Определение: Свойство проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением, или сопротивлением..
Сопротивление обозначается латинскими буквами R или r.
За единицу сопротивления принят ом (сокращенно обозначается Ом или Ω).
Сопротивление проводника равно одному ому, если при напряжении на его концах в один вольт в нем устанавливается ток в один ампер.
В практике сопротивления часто измеряются в килоомах (сокращенно обозначается кОм или кΩ) и мегомах (сокращенно— МОм или МΩ).
1 кОм = 1000 Ом;
1 МОм = 1000 кОм = 1 000 000 Ом.
Для характеристики электрических свойств проводников часто используется величина, обратная сопротивлению, называемая проводимостью.
Определение: Электрической проводимостью (или проводимостью) называется способность вещества пропускать через себя электрический ток.
Чем больше сопротивление проводника, тем меньше его проводимость, и наоборот. Проводимость обозначается латинской буквой G. За единицу проводимости принята проводимость проводника с сопротивлением в 1 ом. Эта единица называется сименс (сим).
Понятия сопротивления и проводимости имеют очень большое значение в электротехнике. Если вещество обладает небольшим сопротивлением (большой проводимостью), то оно называется проводником электрического тока, или проводником. К проводникам относятся большинство металлов (серебро, медь, алюминий, железо, никель, свинец, ртуть), а также сплавы металлов, морская вода, растворы солей и кислот и т. д. Особенно хорошо проводят электрический ток серебро и медь (обладают наилучшей проводимостью). Проводники используются для соединения отдельных элементов электрических схем.
Но есть вещества, которые очень плохо проводят электрический ток, т. е. имеют очень большое сопротивление. Такие вещества называются непроводниками электрического тока, или изоляторами. К изоляторам относятся фарфор, стекло, шерсть, смола, резина, эбонит, слюда, воск, парафин и т. д. Изоляторы широко применяются в электротехнике. Без них нельзя осуществить ни одной электрической цепи.
Следует помнить, что обычно сопротивление изолятора больше сопротивления проводника в несколько миллионов раз.
Кроме проводников и изоляторов, в природе существуют так называемые полупроводники электрического тока. Их проводимость больше, чем изоляторов, но меньше, чем проводников. К полупроводникам относятся: германий, кремний, селен, теллур, многие окислы, карбиды, сульфиды, огромное количество сплавов и химических соединений (арсенид галлия и др.) и т. д.
Характерная особенность полупроводников состоит в том, что их сопротивление в широких пределах изменяется под действием света, электрических и магнитных полей, радиоактивного излучения и от посторонних примесей.
Из некоторых полупроводников изготовляются термисторы (резисторы, величина которых резко изменяется с изменением температуры) и фоторезисторы (величина их сопротивления зависит от освещенности) .
Полупроводники применяются для изготовления диодов, транзисторов, тиристоров и интегральных схем.
Возможность использования полупроводников для усиления и генерации колебаний была открыта в 1922 г. сотрудником Нижегородской радиолаборатории имени В. И. Ленина радиолюбителем О. В. Лосевым, который назвал изобретенный им прибор кристадином.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
- Протекание тока
- Электрический ток в металлических проводниках
- Электродвижущая сила (ЭДС) источника энергии
- Направление и величина электрического тока. Количество электричества
- Электрический ток в электролитах
- Ток смещения в диэлектрике
- Электрический ток в полупроводниках
- Электрический ток в газах
Добавить комментарий
Единица измерения проводимости
В продолжение этой идеи были придуманы символ и единица измерения проводимости. Символ представляет собой заглавную букву «G», а единицей измерения был mho, что означает «ohm» (ом), написанное в обратном порядке (вы думали, что у электронщиков нет чувства юмора?).
Несмотря на свою уместность, единицы измерения mho в последующие годы были заменены единицей Сименс (сокращенно «См», или, в англоязычной литературе, «S»). Это решение об изменении названий единиц измерения напоминает изменение единицы измерения температуры в градусах стоградусной шкалы (degrees centigrade – от латинских слов «centum», т.е. «сто», и «gradus») на градусы Цельсия (degrees Celsius) или изменение единицы измерения частоты c.p.s. (циклов в секунду) в герцы. Если вы ищете здесь какой-то шаблон переименования, то Сименс, Цельсий и Герц – это фамилии известных ученых, имена которых, к сожалению, о природе единиц говорят нам меньше, чем их первоначальные обозначения.
Возвращаясь к нашему примеру с параллельной схемой, мы должны быть в состоянии увидеть, что несколько путей (ветвей) для тока уменьшают общее сопротивление всей цепи, поскольку ток может легче проходить через всю цепь из нескольких ветвей, чем через любую из них отдельно. Что касается сопротивления, дополнительные ветви приводят к меньшему общему значению (ток встречает меньшее сопротивление). Однако с точки зрения проводимости дополнительные ветви приводят к большему общему значению (ток протекает с большей проводимостью).
Основные электрические величины
- Главная
- Измерительные приборы
Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.
Величина | Единица измерения в СИ | Название электрической величины |
q | Кл — кулон | заряд |
R | Ом – ом | сопротивление |
U | В – вольт | напряжение |
I | А – ампер | Сила тока (электрический ток) |
C | Ф – фарад | Емкость |
L | Гн — генри | Индуктивность |
sigma | См — сименс | Удельная электрическая проводимость |
e0 | 8,85418781762039*10-12 Ф/м | Электрическая постоянная |
φ | В – вольт | Потенциал точки электрического поля |
P | Вт – ватт | Мощность активная |
Q | Вар – вольт-ампер-реактивный | Мощность реактивная |
S | Ва – вольт-ампер | Мощность полная |
f | Гц — герц | Частота |
Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.
Десятичный множитель | Произношение | Обозначение (русское/международное) |
10-30 | куэкто | q |
10-27 | ронто | r |
10-24 | иокто | и/y |
10-21 | зепто | з/z |
10-18 | атто | a |
10-15 | фемто | ф/f |
10-12 | пико | п/p |
10-9 | нано | н/n |
10-6 | микро | мк/μ |
10-3 | милли | м/m |
10-2 | санти | c |
10-1 | деци | д/d |
101 | дека | да/da |
102 | гекто | г/h |
103 | кило | к/k |
106 | мега | M |
109 | гига | Г/G |
1012 | тера | T |
1015 | пета | П/P |
1018 | экза | Э/E |
1021 | зета | З/Z |
1024 | йотта | И/Y |
1027 | ронна | R |
1030 | куэкка | Q |
Сила электрического тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.
Сила тока измеряется в амперах. 1А=1Кл/1c
В практике встречаются
1кА = 1000А
1мА = 0,001А
1мкА = 0,000001А
Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).
1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.
Единица измерения напряжения электрического тока представляет собой следующее отношение 1В=1Вт/1А.
В практике встречаются следующие варианты единиц измерения электрического потенциала, а точнее разности потенциалов:
- 1кВ = 1000В
- 1мВ = 0,001В
Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.
1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.
Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:
R=ρlS – сопротивление такого проводника зависит от сечения S и длины l
где ρ – удельное сопротивление материала проводника, табличная величина.
Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.
Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.
I=U/R
Электрической емкостью называется способность проводника накапливать электрический заряд.
Емкость измеряется в фарадах (1Ф).
1Ф = 1Кл/1В
1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.
В практике встречаются
1пФ = 0,000000000001Ф
1нФ = 0,000000001Ф
Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.
Индуктивность измеряется в генри.
1Гн = (В*с)/А
1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.
В практике встречаются
1мГн = 0, 001Гн
Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.
Электропроводность измеряется в сименсах.
1См = Ом-1
Как подобрать шунт к амперметру
Как подключить стрелочный амперметр
Общая проводимость параллельной цепи
Общая проводимость параллельной цепи больше, чем проводимость любой из отдельных ветвей, потому что параллельные резисторы «проводят» вместе лучше, чем по отдельности:
Рисунок 2 – Полная проводимость параллельной цепи
Чтобы быть более точным, полная проводимость в параллельной цепи равна сумме отдельных проводимостей:
\[G_{общ} = G_1 + G_2 + G_3 + G_4\]
Если мы знаем, что проводимость – это не что иное, как математическая величина, обратная (1/x) сопротивлению, мы можем перевести каждый член приведенной выше формулы в сопротивление, подставив величину, обратную каждой соответствующей проводимости:
\[\frac{1}{R_{общ}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}\]
Решая приведенное выше уравнение для полного сопротивления (вместо значения, обратного общему сопротивлению), мы получим следующую формулу:
\[R_{общ} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}}\]
Итак, мы, наконец, пришли к нашей загадочной формуле сопротивления! Проводимость (G) редко используется в качестве практического параметра, поэтому при анализе параллельных цепей часто используется приведенная выше формула.
Комплексные числа. Основные законы электрических цепей в комплексной форме
Определение 1
Комплексное число – это число вида а + сi, где а и с — вещественные числа, а i — мнимая единица, то есть число для которого выполняется равенство i(2) = -1.
Множество комплексных чисел может обозначаться С. Вещественные числа рассматриваются как частный случай комплексных чисел и имеют следующий вид а + 0i. Главное свойство комплексного числа заключается в том, что в нем выполняется основная теорема алгебры, то есть многочлен n-ой степени (n ⩾ 1) имеет n корней. Также доказано, что система комплексных чисел логически непротиворечива.
Замечание 1
Основная теорема алгебры представляет собой утверждение, что поле комплексных чисел алгебраически замкнуто, то есть любой многочлен, который отличен от константы, с комплексными коэффициентами имеет минимум один корень в поле комплексных чисел. Такое утверждение справедливо для многочленов с вещественными коэффициентами, потому что всякое вещественное число является комплексным с нулевой мнимой частью.
Ты эксперт в этой предметной области? Предлагаем стать автором Справочника Условия работы
Необходимость применения комплексных чисел появилась в результате решения кубических уравнений, так как в формуле Кардано под квадратным корнем получалось отрицательное число. В изучение комплексных чисел большой вклад внесли такие ученые, как Эйлер, Гаусс и Декарт. Свойства комплексных чисел позволяют использовать их в решении разнообразных задач в области теории упругости, математики, обработке сигналов, теории колебаний, электромагнетизме, теории управления и т.п.
Законы электрических цепей переменного тока в комплексной форме имеют такой же вид, как цепи постоянного электрического тока, с заменой постоянных величин следующим образом:
Рисунок 1. Формула. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Курсовая работа Комплексные сопротивления и проводимости 460 ₽ Реферат Комплексные сопротивления и проводимости 270 ₽ Контрольная работа Комплексные сопротивления и проводимости 230 ₽
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
К основным законам электроцепей относятся:
- Закон Ома.
- Первый закон Кирхгофа.
- Второй закон Кирхгофа.
В комплексной форме закон Ома будет иметь следующий вид:
Рисунок 2. Формула. Автор24 — интернет-биржа студенческих работ
Первый закон Кирхгофа в применении к узлу в комплексной форме выглядит следующим образом:
Рисунок 3. Формула. Автор24 — интернет-биржа студенческих работ
Второй закон Кирхгофа, применительно к контуру цепи, в комплексной форме можно записать следующим образом:
Рисунок 4. Формула. Автор24 — интернет-биржа студенческих работ
Достоинство выражения законов электрических цепей в комплексной форме заключается в том, что в них учитываются связь между действующими значениями напряжения и тока, а также сдвиг фаз между ними.
Комплексное сопротивление. Физический смысл
Определение 2
Комплексное электрическое сопротивление (электрические импеданс) – это комплексное сопротивление между двумя узлами электрической цепи или двухполюсника для гармонического колебания.
Комплексное сопротивление представляет собой отношение комплексной амплитуды напряжение гармонического сигнала, которое прилагается к двухполюснику, к комплексной амплитуде электрического тока, который протекает через двухполюсник при установившемся режиме (то есть по окончании переходных процессов в цепи). Для пассивных линейных цепей, обладающих постоянными параметрами, в установившемся режиме комплексное электрическое сопротивление никак не зависит от времени. В том случае, когда время в математическом выражения для комплексного сопротивления не сокращается, понятие комплексного сопротивления для двухполюсника неприменимо. Сама формула для электрического импеданса выглядит следующим образом:
Рисунок 5. Формула. Автор24 — интернет-биржа студенческих работ
где: j — мнимая единица; w — круговая частота; U(w). I(w) — амплитуды напряжения и электрического тока на частоте w; фu(w), фi(w) — фазы напряжения и тока гармонического сигнала на частоте w; U(jw), I(jw) — комплексные амплитуды напряжения и электрического тока гармонического сигнала на частоте w.
Если рассматривать комплексное электрическое сопротивление в алгебраической форме, то его действительная часть соответствует активному сопротивлению, а мнимая реактивному. То есть двухполюсник с импедансом z(jw) представляет собой последовательно соединенные резистор с сопротивлением R (z(jw)) и реактивный элемент с комплексным сопротивлением J(z(jw)).
Когда комплексное сопротивление рассматривается в тригонометрической форме, то его модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент соответствует сдвигу фазы между электрическим током и напряжением.
Для резистора комплексное электрическое сопротивление всегда равно его собственном и при этом никак не зависит от частоты, то есть:
$zR=R$
Напряжение и электрический ток в конденсаторе связаны соотношением:
$i(t) = C*(dU/dt)$
Следовательно, при напряжении
Рисунок 6. Формула. Автор24 — интернет-биржа студенческих работ
Электрический ток, который протекает через конденсатор, может быть рассчитан следующим образом:
Рисунок 7. Формула. Автор24 — интернет-биржа студенческих работ
Отсюда комплексное сопротивление конденсатора рассчитывается по формуле:
$zC(jw) = 1/(jwC) = -(j/(wC).$
Аналогично расчету комплексного сопротивления для конденсатора получают формулу расчета для катушки индуктивности:
$zL(jw)=jwL$