Формула расчета мощности по току и напряжению электросхемы


Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Сила тока в цепи при последовательном соединении резисторов

Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

Расчёт напряжения, тока и сопротивления

Закон Ома предназначен для того, чтобы найти неизвестную третью, если известны первая и вторая. С этого по подробней, чтобы облегчить закон Ома, будем пользоваться треугольником Ома. Вот этот треугольник:

Давайте разберёмся с напряжением, чтобы найти напряжение, используя треугольник Ома, надо закрыть рукой напряжение – U, остались только I-ток и R-сопротивление, передними стоит вертикальная черта, вертикальная это черта снизу вверх, это вертикальная линия обозначает умножение, значит, чтобы найти напряжение надо ток умножить на сопротивление.

Вот такая формула получилась: U=I*R, где U-напряжение, I-ток, R-сопротивление.

Теперь давайте попробуем найти ток, прикроем рукой I, теперь перед напряжением и сопротивление стоит горизонтальная черта, горизонтальная, это та черта, которая идёт слева направо. Горизонтальная черта означает деление. Значит, чтобы найти ток, надо напряжение разделить на сопротивление.

Формула получилась следующая: I= U\R, где I-ток, U-напряжение, R-сопротивление.

Найдём сопротивление, закроем рукой R, то получим опять горизонтальную черту перед напряжением и током, значит нужно делить.

Формула получилась для расчёта сопротивления: R=U\I, где R-сопротивление, U-напряжение, I-ток. Итак, мы научились пользовать треугольником Ома и узнали о Законе Ома. Теперь, пожалуй, поучимся на примерах.

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Поэтому рассматриваем вначале наиболее простой вопрос.

Графики и формулы под однофазное напряжение

Как работает резистор

На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.

Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.

Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.

Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.

Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.

График мгновенных значений активной мощности переменного тока на резистивном сопротивлении имеет вид повторяющихся положительных волн. Но за один период им совершается такая же работа, как и в цепях постоянного тока и напряжения.

На резисторе не создается реактивных потерь.

Как работает индуктивность

Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.

Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.

Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:

  1. активной, обозначаемой индексом PL;
  2. реактивной QL.

Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.

Как работает реальная схема со всеми видами сопротивлений

В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.

Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.

На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.

В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.

Косинус фи (cosφ) используется при анализе треугольника мощностей и сопротивлений, характеризует потери энергии.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.

Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.

В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.

Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.

В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.

А поскольку они все идентичные, то их просто утраивают.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Р = Рa+Рв+Рc

Если пометить фазное выражение буквой ф. например Pф, томожно записать:

P = 3Pф = 3Uф×Iф×cosφ

Аналогично будет вычисляться реактивная составляющая

Q = Qa+Qв+Qc

Или

Q = 3Qф = 3Uф×Iф×sinφ

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

S = √(P2+Q2)

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Старые аналоговые приборы показаны на этой картинке.

Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:

  • ВА — (русское), VA (международное) вольтампер для полной величины мощности;
  • Вт —(русское), var (международное) ватт —активной;
  • вар (русское), var (международное) — реактивной.

Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.

Многие современные цифровые приборы способны осуществлять эту функцию автоматически.

Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.

Как работает делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает напряжение 6,77 Вольт.

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

Электрические измерения.

Нарисуем простейшую электрическую цепь, состоящую из батареи «В» и нагрузки «R», и рассмотрим, как необходимо измерять протекающий по цепи ток, и напряжение на нагрузке.

Что бы измерить протекающий в цепи ток, необходимо в разрыв источника питания и нагрузки включить измерительный прибор (амперметр).

Для того, что бы на измеряемую цепь было как можно меньше влияний и для повышения точности измерения, амперметры изготавливают с очень малым внутренним сопротивлением, то есть если включить амперметр в разрыв проверяемой цепи, то он практически не добавит к измеряемой цепи дополнительного сопротивления, и протекающий по цепи ток практически не изменится, или уменьшится на очень незначительную величину не оказывающую значительного влияния на конечный результат измерения.
Поэтому категорически нельзя измерять «ток приходящий на нагрузку» путём подключения амперметра параллельно нагрузке, или непосредственно у источника питания (без нагрузки) и таким образом попытаться замерить выходной ток выдаваемый источником питания или осветительной сетью. Это равносильно тому, что подключить параллельно нагрузке или источнику питания обычный провод. Попросту сказать — закоротить цепь.
Если источник питания обладает хорошей мощностью — будет очень сильный Б А Х . Последствия могут быть самыми разными, от выхода из строя измерительного прибора (амперметра), что обычно и случается, и до выбитых пробок (АЗС) в квартире и обесточивания помещения и возможного поражения током.

Для измерения напряжения на нагрузке необходимо, что бы подключаемый к ней вольтметр не шунтировал нагрузку и не оказывал заметного влияния на результат измерения. Для этого вольтметры изготавливают с очень высоким входным сопротивлением и их наоборот подключают параллельно измеряемой цепи. Благодаря высокому входному сопротивлению вольтметра — сопротивление измеряемой цепи практически не изменяется, или изменяется очень не значительно, не оказывая заметного влияния на результат измерения.

На рисунке выше показан порядок включения амперметра и вольтметра для измерения напряжения на нагрузке и протекающего через неё тока. Так же указана полярность подключения измерительных приборов в измеряемую цепь.

Напряжение в квадрате делить

Сайт преподавателя КПК: Информационные технологии, Компьютерная графика, Физика

Напряжение измеряют вольтметром (V), а ток через нагрузку (R) — амперметром (A).

Чем быстрее выполняется работа, тем больше мощность исполнителя.

Мощная машина разгоняется быстрее. Мощный (сильный) человек способен быстрее затащить мешок картошки на девятый этаж.

1 Ватт — мощность, позволяющая совершить работу в 1 Дж за одну секунду (что такое джоуль описывалось выше).

Если Вы способны разогнать двухкилограммовое тело до скорости 1 м/с за одну секунду, значит, развиваете мощность 1 Вт.

Если Вы поднимаете килограммовый груз на высоту 0,1 метра за секунду, Ваша мощность равна 1 Вт ибо груз приобретает за секунду потенциальную энергию в 1 Дж.

Если уронить с одинаковой высоты одну тарелку на бетонный пол, а вторую на одеяло, первая наверняка разобьется, а вторая выживет. В чем разница? Начальные и конечные условия одинаковые. Тарелки падают с одной и той же высоты, стало быть, обладают одинаковой энергией. На уровне пола обе тарелки останавливаются — вроде все идентично. Разница лишь в

том, что энергия, которую тарелка накопила в процессе полета, в первом случае выделяется мгновенно (очень быстро), а когда тарелка падает на одеяло или ковер, процесс торможения растягивается во времени.

Пусть падающая тарелка обладает кинетической энергией в 1Дж. Процесс столкновения с бетонным полом занимает, допустим, 0,001 сек. Получается, что мощность, выделяемая при ударе, равна 1/0,001=1000 Вт!

Если же тарелка плавно замедляется в течение 0,1 сек, мощность будет 1/0,1=10 Вт. Уже есть шанс выжить — если на месте тарелки окажется живой организм.

Для того и существуют зоны деформации и подушки безопасности в автомобилях, чтобы растянуть во времени процесс выделения энергии

при аварии, т.е., снизить мощность при ударе. А выделение энергии, между прочим и есть работа. В данном случае, работа по разрыву ваших внутренних органов и ломанию костей.

Вообще, работа — это процесс преобразования одного вида энергии в другой

.

Еще пример: можно без последствий сжечь содержимое баллона с пропаном в горелке. Но если смешать газ, содержащийся в баллоне с воздухом и воспламенить, произойдет взрыв.

В обоих случаях выделяется одинаковое количество энергии. Но во втором энергия выделяется за короткий промежуток времени. А мощность — отношение количества работы ко времени, за которое она сделана

.

Касаемо электричества, 1 Вт — мощность, выделяемая на нагрузке, когда произведение тока через нее и напряжения на его концах равно единице. То есть, например, если ток через лампу равен 1 А, и напряжение на ее выводах равно 1 В, мощность, выделяемая на ней 1 Вт.

Такая же мощность будет у лампы с током 2 А при напряжении на ней 0,5 В — произведение этих величин тоже равно единице.

P = U*I

. Мощность равна произведению напряжения и силы тока .

I = P/U

— сила тока равна мощности, деленной на напряжение.

Есть, допустим, лампа накаливания. На ее цоколе указаны параметры: напряжение 220 В, мощность 100 Вт. Мощность 100 Вт означает, что произведение напряжения, прикладываемое к ее выводом, умноженное на ток, протекающий через эту лампу равно ста. U*I=100.

Какой ток через нее будет протекать? Элементарно, Ватсон: I = P/U, делим мощность на напряжение (100/220), получаем 0,454 А. Ток через лампу 0,454 ампер. Или, иначе, 454 миллиампер (милли — тысячная доля).

Еще один вариант записи U = P/I

. Тоже где-нибудь пригодится.

Теперь мы вооружены двумя формулами — законом Ома и формулой мощности электрического тока. А это уже инструмент.

Примеры расчётов закона Ома

Давайте, найдём напряжение, если ток равен 0,9 Ампер, а сопротивление 100 Ом, пользуясь треугольником, прикрываем напряжение рукой, смотрим, вертикальная черта, значит умножить. Опять пользуемся той формулой, только подставляем числа, U = 0,9 А * 100 Ом, считаем, получиться 90, значит U = 90 вольт.

Теперь рассчитываем сопротивление, берём те же единицы, только убираем сопротивление, получиться вот такая формула: R = 90 В \ 0,9 А, получим 100 Ом.

Чтобы рассчитать ток, опять же убираем ток, получаем эту формулу I = 90 В \ 100 Ом, получаем 0,9 Ампер. Итак, на этом всё, кстати, закон Ома действует там, где нет катушек индуктивности и конденсаторов, не забивайте голову конденсаторами и катушками индуктивности, просто, запомните, что закон Ома действует, там, где нет катушек индуктивности и конденсаторов. Надеюсь, моя статья была полезной, всем удачи, с вами был Дмитрий Цывцын.

Источник

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]