Расчет пусковых и регулировочных характеристик асинхронных двигателей


Пуск асинхронного двигателя

Пусковые свойства двигателей.

При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др. Ниже различные способы пуска рассматриваются более подробно.

Прямой пуск.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на рис. 3.22. При включении рубильника в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

, (3.37)

максимальны (см.п.3.19 при s=1). По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Рис. 3.22

Значение пускового момента находится из (3.23) при s = 1:

,(3.38)

Из рис. 3.18 видно, что пусковой момент близок к номинальному и значительно меньше критического. Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места. В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

Пуск двигателей с улучшенными пусковыми свойствами.

Улучшение пусковых свойств асинхронных двигателей достигается использованием эффекта вытеснения тока в роторе за счет специальной конструкции беличьей клетки. Эффект вытеснения тока состоит в следующем: потокосцепление и индуктивное сопротивление X2 проводников в пазу ротора тем выше, чем ближе ко дну паза они расположены (рис.3.23). Также X2 прямо пропорционально частоте тока ротора.

Следовательно, при пуске двигателя, когда s=1 и f2 = f1 = 50 Гц , индуктивное сопротивление X2 = max и под влиянием этого ток вытесняется в наружный слой паза. Плотность тока j по координате h распределяется по кривой, показанной на рис.3.24. В результате ток в основном проходит по наружному сечению проводника, т.е. по значительно меньшему сечению стержня, и, следовательно, активное сопротивление обмотки ротора R2 намного больше, чем при нормальной работе. За счет этого уменьшается пусковой ток и увеличивается пусковой момент МП (см. (3.37), (3.38) ).

По мере разгона двигателя скольжение и частота тока ротора падает и к концу пуска достигает 1 – 4 Гц. При такой частоте индуктивное сопротивление мало и ток распределяется равномерно по всему сечению проводника. При сильно выраженном эффекте вытеснения тока становится возможным прямой пуск при меньших бросках тока и больших пусковых моментах.

К двигателям с улучшенными пусковыми свойствами относятся двигатели, имеющие роторы с глубоким пазом, с двойной беличьей клеткой и некоторые другие.

Рис.3.23 Рис. 3.24

Двигатели с глубокими пазами.

Как показано на рис.3.25, паз ротора выполнен в виде узкой щели, глубина которой примерно в 10 раз больше, чем ее ширина. В эти пазы-щели укладывается обмотка в виде узких медных полос. Распределение магнитного потока показывает, что индуктивность и индуктивное сопротивление в нижней части проводника значительно больше, чем в верхней части.

Рис.3.25

Поэтому при пуске ток вытесняется в верхнюю часть стержня и активное сопротивление значительно увеличивается. По мере разгона двигателя скольжение уменьшается, и плотность тока по сечению становится почти одинаковой.

В целях увеличения эффекта вытеснения тока глубокие пазы выполняются не только в виде щели, но и трапецеидальной формы. В этом случае глубина паза несколько меньше, чем при прямоугольной форме.

Двигатели с двойной клеткой.

В таких двигателях обмотки ротора выполняются в виде двух клеток (рис.3.26): во внешних пазах 1 размещается обмотка из латунных проводников, во внутренних 2 – обмотка из медных проводников.

Рис.3.26

Таким образом, внешняя обмотка имеет большее активное сопротивление, чем внутренняя. При пуске внешняя обмотка сцепляется с очень слабым магнитным потоком, а внутренняя – сравнительно сильным полем. В результате ток вытесняется во внешнюю клетку, а во внутренней тока почти нет.

По мере разгона двигателя ток из внешней клетки переходит во внутреннюю и при s =sНОМ протекает в основном по внутренней клетке. Ток во внешней клетке при этом сравнительно небольшой.

Результирующий пусковой момент, складывающийся из моментов от двух клеток, значительно больше, чем у двигателей нормальной конструкции, и несколько больше, чем у двигателей с глубоким пазом. Однако следует иметь в виду, что стоимость двигателей с двойной клеткой ротора выше.

Пуск переключением обмотки статора.

Если при нормальной работе двигателя фазы статора соединены в треугольник, то, как показано на рис.3.27, при пуске первоначально они соединяются в звезду.

Рис.3.27

Для этого сначала включается выключатель Q, а затем переключатель S ставится в нижнее положение Пуск. В таком положении концы фаз Х, Y, Z соединены между собой, т.е. фазы соединены звездой. При этом напряжение на фазе в √3 раз меньше линейного.

В результате линейный ток при пуске в 3 раза меньше, чем при соединении треугольником. При разгоне ротора в конце пуска переключатель S переводится в верхнее положение и, как видно из рис. 3.27, фазы статора пересоединяются в треугольник.

Недостатком этого способа является то, что пусковой момент также уменьшается в 3 раза, так как момент пропорционален квадрату фазного напряжения, которое в √3 раз меньше при соединении фаз звездой. Поэтому такой способ применим при небольшом нагрузочном моменте и только для двигателей, нормально работающих при соединении обмоток статора в треугольник.

Пуск при включении добавочных резисторов в цепь статора.(рис. 3.28)

Рис.3.28

Перед пуском выключатель (пускатель) находится в разомкнутом состоянии и замыкается выключатель Q1.

При этом в цепь статора включены добавочные резисторы RДОБ. В результате обмотка статора питается пониженным напряжением U1n = U1НОМ – InRДОБ. После разгона двигателя замыкается выключатель Q2 и обмотка статора включается на номинальное напряжение U1НОМ. Подбором RДОБ можно ограничить пусковой ток до допустимого.

Следует иметь в виду, что момент при пуске, пропорциональный U21П, будет меньше и составляет (U1П / U1НОМ)2 номинального. Важно отметить, что при этом способе пуска значительны потери в сопротивлении RДОБ (RДОБI21n). Можно вместо резисторов RДОБ включить катушки с индуктивным сопротивлением ХДОБ, близким к RДОБ.

Применение катушек позволяет уменьшить потери в пусковом сопротивлении.

Автотрансформаторный пуск.

Кроме указанных способов можно применить так называемый автотрансформаторный пуск.

Соответствующая схема показана на рис.3.29.

Рис.3.29

Перед пуском переключатель S устанавливается в положение 1, а затем включается автотрансформатор и статор питается пониженным напряжением U1П. Двигатель разгоняется при пониженном напряжении и в конце разгона переключатель S переводится в положение 2 и статор питается номинальным напряжением U1ном.

Если коэффициент трансформации понижающего трансформатора n, тогда ток I на его входе будет в n раз меньше. Кроме того, пусковой ток будет также в n раз меньше, т.е. ток при пуске в сети будет в n2 раз меньше, чем при непосредственном пуске.

Этот способ, хотя и лучше рассмотренных в п.3.14.7, но значительно дороже.

Пуск двигателя с фазным ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора, как это показано на рис.3.30.

Начала фаз обмоток ротора присоединяются к контактным кольцам и через щетки подключаются к пусковому реостату с сопротивлением Rp.

Приведенное к обмотке статора сопротивление пускового реостата Rp рассчитывается так, чтобы пусковой момент был максимальный, т.е. равен критическому. Так как при пуске скольжение sП = 1, то sП = 1 = sК , равенство МП = М Пmaх = МК будет обеспечено. Тогда

.

Пуск двигателя происходит по кривой, показанной на рис.3.31. В момент пуска рабочая точка на механической характеристике находится в положении а, а при разгоне двигателя она перемещается по кривой 1, соответствующей полностью включенному реостату.

При моменте, соответствующем точке е , включается первая ступень реостата и момент скачком увеличивается до точки b – рабочая точка двигателя переходит на кривую 2; в момент времени, соответствующей точке d, выключается вторая ступень реостата, рабочая точка скачком переходит в точку с и двигатель выходит на естественную характеристику 3 и затем в точку f. Реостат закорачивается, обмотка ротора замыкается накоротко, а щетки отводятся от колец.

Таким образом, фазный ротор позволяет пускать в ход асинхронные двигатели большой мощности при ограниченном пусковом токе. Однако этот способ пуска связан со значительными потерями в пусковом реостате.

Кроме того, двигатель с фазным ротором дороже двигателя с короткозамкнутым ротором. Поэтому двигатель с фазным ротором применяется лишь при больших мощностях и высоких требованиях к приводу.

Технические характеристики

Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.
Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Как узнать пусковой ток?

Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:

Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.

Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!

Теперь разберём другой вопрос –

Тепловое действие пускового тока

Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.

Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.

Время-токовые характеристики защитного автомата

Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.

А для пускового тока двигателя график будет примерно такой:

График пускового тока (теоретический) при Кп = 6

Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.

Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.

Про потери на низком напряжении я писал тут, про потери в сетях 0,4 кВ – здесь.

Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.

Теперь повернём последний график, чтобы привести оси к одной системе координат:

Время от тока, если можно так выразиться

Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?

Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.

Какой вред от пускового тока?

Пусковой ток – это проблема. Это –

От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.

И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.

Реальные измерения тока

Как я говорил выше, по моему мнению лучший способ “увидеть” пусковой ток – использовать активный (резистивный) шунт, и смотреть на нём напряжение осциллографом.

Я использовать вот такой шунт:

Шунт для измерения пускового тока при помощи осциллографа

Подопытный – мотор-редуктор, который через цепную передачу крутит вертикальный шнек:

Мотор-редуктор, на котором измеряем пусковой ток

Шнек на момент пуска был полным, поэтому его рабочий ток (7,7 А, измерено клещами) был почти равен номинальному (8,9 А, видно на шильдике).

Шильдик двигателя вертикального шнека

Ситуация по пусковому току видна на осциллографе:

Осциллограмма пускового тока 500 мс/дел

Приблизим интересующий момент, ускорив развертку до 100 мс/дел:

Осциллограмма пускового тока 100 мс/дел

Тут уже легко увидеть синус питающего тока и оценить коэффициент кратности пускового тока Кп, который примерно равен 4.

Ещё приблизим момент истины (до 50 мс/дел):

Момент пуска двигателя – ток пуска

Тут уже видны хорошо и переходные процессы, обусловленные индуктивностью и ЭДС самоиндукции обмоток двигателя. Этот импульс, длительность которого гораздо меньше периода сети 20 мс, даёт хорошую помеху с широким спектром в питающую сеть и радиоэфир.

Ещё один повод для использования ПЧ? Не совсем, там с помехами ситуация гораздо хуже!

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]