Калькулятор параллельного колебательного LC-контура


Эффект резонанса

Ярким примером механического класса резонаторов является пружинный маятник. Профессор из технологического Массачусетского института (в Америке), В. Левин, акцентирует внимание своих студентов на то, что резонанс (resonance) – это эффект, сопряжённый с увеличением амплитуды. Для демонстрации явления используется установка. Она состоит из следующих компонентов:

  • электродвигатель;
  • механизм, превращающий вращение в возвратно-поступательное движение;
  • ЛАТР – лабораторный автотрансформатор;
  • медная пружина из проволоки с набором грузиков;
  • направляющая для пружины.

Направление колебания пружины – вертикальное. Вращение вала мотора заставляет пружину совершать колебания. С помощью автотрансформатора присутствует возможность регулировать напряжение. Регулировка позволяет варьировать частоту вращения вала и колебаний маятника. При изменении частоты вращения вала амплитуда возвратно-поступательного движения остаётся неизменной.

Перед опытом замеряется удлинение медной пружины под действием грузиков (для оценки резонансной частоты пружины). Изменение скорости вращения вала заставляет амплитуду колебания конца пружины с грузом изменяться. Амплитуда увеличивается и на 1-м герце частоты становится максимальной (~30 см).

Важно! При дальнейшем увеличении скорости вращения вала амплитуда конца пружины начинает уменьшаться. Это означает, что resonance пройден. Если уменьшать напряжение, а с ним и частоту вращения двигателя, снова можно наблюдать эффект resonance колебания пружины.


Пружинный маятник

Добротность пружины Q определяется как отношение амплитуды колебания пружины Aпр к амплитуде колебания вынуждающей силы Aвс. В этом случае Q = Aпр/Aвс = 30/5 = 6, где Aвс = 5.

Записки программиста

Как ни странно, в катушках индуктивности нас в первую очередь интересует индуктивность. Измерить индуктивность не сложно. Готовые RLC-метры стоят недорого. Если RLC-метра нет, но есть осциллограф, индуктивность можно определить с его помощью. Также нормальный антенный анализатор без труда измеряет как индуктивность, так и емкость. Но у катушек индуктивности есть еще по крайней мере два важных свойства — частота собственного резонанса и добротность. Давайте разберемся, почему эти свойства важны и как их измерить.

Суть проблемы

Катушки индуктивности, существующие в реальном мире, можно описать при помощи следующей модели:

Здесь L — это индуктивность катушки. Катушка мотается неким проводником, а реальный проводник имеет отличные от нуля потери. Резистор Rs (он же ESR, equivalent series resistance) как раз отображает эти потери. Конденсатор Cp — это паразитная емкость между витками катушки.

Можно заметить, что индуктивность L и конденсатор Cp образуют параллельный колебательный контур. У этого контура есть резонансная частота. Она и называется частотой собственного резонанса катушки (self-resonant frequency). Ниже этой частоты катушка ведет себя, как катушка. Однако выше она начинает вести себя больше как конденсатор. Определив частоту собственного резонанса, мы поймем, на каких частотах может быть использована катушка.

Rs имеет сложную природу, и работать с ним напрямую неудобно. Поэтому вместо того, чтобы говорить об Rs, говорят о добротности (quality factor или Q). Добротность — это безразмерная величина, характеризующая скорость затухания колебаний в колебательной системе. Чем больше Q, тем меньше затухания.

Для катушек индуктивности добротность определяется, как отношение реактивного сопротивления к Rs:

Q = Xl / Rs

Реактивное сопротивление является функцией от частоты. Rs на самом деле тоже зависит от частоты. В мире любительского радио обычно говорят о Q на рабочих частотах катушки. Предполагается, что на этом интервале частот добротность меняется незначительно.

Стоит упомянуть, что различают холостую добротность (unloaded Q) и нагруженную добротность (loaded Q). В рамках этой статьи под добротностью понимается исключительно холостая добротность. Нагруженная добротность возникает, когда катушку помещают в конкретную электрическую цепь.

Испытуемый

Попробуем определить частоту собственного резонанса и добротность такой катушки:

Катушка намотана проводом МГТФ площадью сечения 0.35 кв.мм на трубе ПВХ с внешним диаметром 25 мм. Для принудительного шага я мотал два параллельных провода. Затем один провод постепенно отматывался, а второй фиксировался лаком. Длина намотки составила 30 мм, индуктивность — 2 мкГн.

Такой способ намотки был использован с целью получить не самую позорную добротность. За годы экспериментов радиолюбители выработали хорошие практики, позволяющие максимизировать добротность. Основные рекомендации:

  • Толстый проводник предпочтительнее тонкого;
  • Любой диэлектрик в качестве каркаса катушки или изолятора проводника уменьшает добротность;
  • Charles Michaels, W7XC (SK) рекомендует в катушках с воздушным диэлектриком использовать отношение длины катушки к ее диаметру (L/D) не более 2:1. Здесь речь идет о намотке виток к витку;
  • Если же катушка мотается на каркасе, рекомендуется L/D = 1:1;
  • Tom Rauch, W8JI рекомендует использовать расстояние между витками, равное толщине проводника и L/D от 1 до 4;

Кое-какие подробности можно найти в 9-ой главе книги ON4UN’s Low Band DXing, 5th Edition, в разделе 3.7.2 Making or Buying High-Q Loading Coils. Отмечу, что просто следовать этим советам недостаточно. Если ваша задача — получить как можно большую добротность, нужно брать конкретные доступные материалы, мотать катушки и измерять.

На самом деле, мной было намотано пять катушек пятью разными способами. Приведенная выше имела максимальную добротность.

Ищем собственный резонанс

Для определения частоты собственного резонанса было решено воспользоваться анализатором спектра. С тем же успехом подойдет осциллограф с генератором сигналов, или RTL-SDR с генератором шума. Но анализатор спектра удобнее.

Для подключения катушки между следящим генератором и входом анализатора было использовано такое приспособление:

Экраны BNC-разъемов соединены между собой, а жилы идут к «банановым» коннекторам. К этим коннекторам и подключается катушка.

В итоге получаем такую АЧХ:

Перед нами частоты от 1 до 201 МГц, цена деления по горизонтали — 20 МГц. Собственный резонанс, если верить графику, пришелся где-то на 150 МГц. Ниже аттенюация сигнала увеличивается с ростом частоты. Так и должна работать катушка. Выше аттенюация уменьшается с ростом частоты. Это поведение конденсатора.

Какие выводы отсюда можно сделать? Катушку можно использовать на частотах где-то до 37 МГц. На частотах, приближающихся к частоте собственного резонанса, использовать катушки нельзя. Причина заключается в том, что добротность падает по мере приближения к частоте собственного резонанса. На частоте собственного резонанса добротность равна нулю. Рекомендуется использовать катушки на частотах в 4+ раза ниже частоты собственного резонанса.

Определяем добротность

Для определения добротности воспользуемся подходом из статьи Fixture for Measuring Inductor Q with your Antenna Analyzer [PDF], которую написал Phil Salas, AD5X. По инструкции из статьи было изготовлено такое устройство:

Идея довольно простая. Антенный анализатор подключается к BNC разъему, а катушка подключается к «банановым» коннекторам. В первом положении тумблера антенный анализатор измеряет эквивалент нагрузки 50 Ом. Для эквивалента нагрузки было использовано 20 соединенных параллельно резисторов 1 кОм ± 1%. Во втором положении измеряется последовательный колебательный контур, образованный этим же резистором 50 Ом, измеряемой катушкой и КПЕ.

На резонансной частоте последовательный LC-контур представляет собой КЗ, и мы увидим чисто активное сопротивление около 50 Ом:

В данном случае (первый график) резонанс попал на 9.3185 МГц. Антенный анализатор видит 50.4 Ом. Переключаем тумблер в другое положение. Видим сопротивление резистора без контура. Оно составило 49.8 Ом (второй график). Есть также небольшая реактивность в 0.4j. Ею мы пренебрежем, поскольку это всего лишь:

>>> from math import pi >>> F = 9_318_500 >>> 0.4/(2*pi*F) 6.83178378888857e-09

… 6.8 нГн, почти в 300 раз меньше измеряемых 2 мкГн.

Смотрите, что получается. С контуром было 50.4 Ом, а без контура — 49.8 Ом. Разница в 0.6 Ом включает в себя Rs катушки, а также потери на конденсаторе. Но конденсаторы обладают существенно большей добротностью (> 1000), чем катушки. Поэтому разница в 0.6 Ом приходится преимущественно на Rs катушки.

Теперь у нас есть все необходимое для вычисления добротности:

>>> from math import pi >>> F = 9_318_500 >>> L = 2.0/1000/1000 >>> Rs = 50.4 — 49.8 >>> Xl = 2*pi*F*L >>> Q = Xl/Rs >>> Q 195.16620761650944

Добротность порядка 200 — это неплохой результат. Обычные покупные катушки для сквозного монтажа имеют добротность в пределах 100. Не удивительно, что бывалые радиолюбители предпочитают мотать катушки самостоятельно. Случайная самодельная катушка из медной проволоки будет иметь добротность уже порядка 100-150. Согласно Low Band DXing, после некоторой практики можно легко делать катушки с добротностью ~400. В качестве потолка в различных источниках приводится Q от 800 до 1000.

Домашнее задание: Смотайте катушку с индуктивностью побольше, порядка 70 мкГн. Для такой катушки вам понадобится каркас около 70 мм и 30 витков эмалированной проволоки диаметром 0.9 мм. Каким вышел Rs? Куда попала частота собственного резонанса? Сравните с приведенными выше результатами.

Внимательный читатель может поинтересоваться, а почему номинал резистора был выбран именно 50 Ом? Это сделано лишь по той причине, что ошибка измерения антенного анализатора при таком сопротивлении минимальна. В теории, с тем же успехом можно использовать любое другое сопротивление, лишь бы оно было чисто активным.

Заключение

Допустим, мы спаяли генератор или фильтр, и он работает не так, как ожидалось. Причина может заключаться к собственном резонансе катушек. Слишком большие потери в согласующем устройстве? Причина может быть в низкой добротности компонентов. Теперь мы имеем больше шансов правильно диагностировать такие проблемы, или еще лучше — вообще избегать их.

Дополнение: Измеряем параметры кварцевых резонаторов

Метки: Электроника.

Определение колебательного контура

Частота вращения: формула

Резонансные явления, отмеченные в электротехнике, ярко выражены в схемах колебательных контуров (КК). Подобные конструкции представляют собой элементарные системы, способные осуществлять свободные колебания электромагнитной природы. Сам КК в цепи состоит из следующих элементов:

  • конденсатора;
  • катушки индуктивности;
  • источника тока.

Внимание! Выводы элементов схемы могут соединяться друг с другом параллельно или последовательно. Все зависит от того, какого результата нужно добиться от резонанса в КК.

Колебательный контур LC

Колебательный контур

— электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

— Конденсатор C

– реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию. — Катушка индуктивности
L
– реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Рассмотрим, как возникают и поддерживаются свободные электрические колебания в параллельном контуре LC

.

Основные свойства индуктивности

— Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией . — Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Природа электромагнитных колебаний в контуре

Период свободных колебаний контура LC

можно описать следующим образом:

Если конденсатор ёмкостью C

заряжен до напряжения
U
, потенциальная энергия его заряда составит. Если параллельно заряженному конденсатору подключить катушку индуктивности
L
, в цепи пойдёт ток разряда конденсатора, создавая магнитное поле в катушке.

Внешний магнитный поток создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в каждом витке, поэтому конденсатор разрядится не мгновенно, а через время t

1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта
t
1 = . По истечении времени
t
1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны. Накопленная катушкой магнитная энергия в этот момент составит. В идеальном рассмотрении, при полном отсутствии потерь в контуре,
EC
будет равна
EL
. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Далее изменение (уменьшение от максимума) магнитного потока накопленной энергии катушки будет создавать в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t

2 =
t
1, он перезарядит конденсатор от нулевого до максимального отрицательного значения (
-U
). Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t

1 и
t
2 составят половину периода полного колебания в контуре. Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени
t
3, сменив полярность полюсов.

В течении заключительного этапа колебания (t

4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения
U
(в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде. Время t

1 +
t
2 +
t
3 +
t
4 составит период колебаний . Частота свободных колебаний контура ƒ = 1 /
T
Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL

равно реактивному сопротивлению ёмкости
XC=1/(2πfC)
.

Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице. При переключении множителей автоматически происходит пересчёт результата.

Наверх

Расчёт частоты:

Частота резонанса колебательного контура LC. ƒ = 1/(2π√(LC))

Расчёт ёмкости:

Ёмкость для колебательного контура LC C = 1/(4𲃲L)

Расчёт индуктивности:

Индуктивность для колебательного контура LC L = 1/(4𲃲C)

Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать реактивное сопротивление.

Рассчитать реактивную мощность и компенсацию.

Подключение к цепи индуктивной катушки

Частота тока

Включение в ёмкостную цепь катушки индуктивности сразу превращает её в КК. В зависимости от схемы подключения, различают два вида КК 1 класса: параллельный и последовательный.

Параллельный КК

В данной схеме конденсатор С соединён с катушкой L параллельно. Если заряженный конденсатор присоединить к катушке, то энергия, запасённая в нём, передастся ей. Через индуктивную катушку L потечёт ток, вызывая электродвижущую силу (ЭДС).

ЭДС самоиндукции L будет направлена на снижение тока в параллельной цепи. Ток, созданный этой ЭДС, и ток разряда ёмкости сначала одинаковы, а их суммарное значение равно нулю. Конденсатор передаст свою энергию Ec в катушку и полностью разрядится. Индуктивность, получив максимальную магнитную энергию EL, начнёт заряжать ёмкость напряжением уже другой полярности. Когда вся энергия из индуктивности перейдёт в ёмкость, конденсатор будет полностью заряжен. В цепи появляются колебания, такой контур называется колебательным.


Параллельный КК

К сведению. Если бы в такой цепи отсутствовали потери, то такие колебания никогда не стали затухать. На практике, продолжительность процесса зависит от потери энергии. Чем больше потери, тем меньше длительность колебаний.

Параллельное соединение C и L вызывает резонанс токов. Это значит, что токи, проходящие через C и L, выше по значению, чем ток через сам контур, в конкретное число раз. Это число носит название добротности Q. Оба тока (емкостной и индуктивный) остаются внутри цепи, потому что они находятся в противофазе, и происходит их обоюдная компенсация.

Стоит отметить! На fрез величина R КК устремляется к бесконечности.

Последовательный КК

В этой схеме соединены последовательно друг с другом катушка и конденсатор.


Последовательный КК

В такой схеме происходит resonance напряжений, R контура устремляется к нулю в случае образования резонансной частоты (fрез). Это позволяет использовать подобную систему резонанса в качестве фильтра.

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.

Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонансная частота

При подаче на два КК (параллельного и последовательного) переменного напряжения с изменяющейся частотой их реактивные сопротивления C и L будут меняться. Изменения происходят следующим образом:

  • с увеличением f – ёмкостное сопротивление уменьшается, а индуктивное увеличивается;
  • с уменьшением f – ёмкостное сопротивление увеличивается, а индуктивное уменьшается.

Резонанс — что это такое

Частота, при которой реактивные сопротивления обоих элементов контура равны, называется резонансной.

Важно! При fрез сопротивление параллельного КК будет максимальным, а последовательного КК – минимальным.

Резонансная частота формула, которой имеет вид:

fрез = 1/2π*√L*C,

где:

  • L – индуктивность, Гн;
  • C – ёмкость, Ф.

Подставляя известные значения ёмкости и индуктивности в формулу резонансной частоты колебательного контура любой конфигурации, можно рассчитать этот параметр.

Для определения периода колебаний КК и частоты резонанса можно воспользоваться онлайн калькулятором на соответствующем портале в сети. Профессиональная программа имеет несложный интерфейс.


Пример интерфейса онлайн калькулятора LC-контура

Радиолюбитель

Практический расчет последовательного или параллельного LC контура.

Доброго дня уважаемые радиолюбители! Сегодня мы с вами рассмотрим порядок расчета LC контура.

Некоторые из вас могут спросить, а на черта нам это нужно? Ну, во-первых, лишние знания никогда не помешают, а во-вторых, бывают в жизни моменты, когда вам знание этих расчетов может понадобиться. К примеру, очень многие начинающие радиолюбители (естественно, в основном молодые), увлекаются сборкой так называемых “жучков” – устройств позволяющих на расстоянии прослушивать что-нибудь. Конечно я уверен, что это делается без всяких нехороших (даже грязных) мыслей подслушать кого-нибудь, а в благих целях. Например устанавливают “жучок” в комнате с малышом, а на радиовещательный приемник прослушивают не проснулся ли он. Все схемы “радиожучков” работают на определенной частоте, но что делать, когда эта частота вас не устраивает. Вот тут вам придет на помощь знание нижеприведенной статьи.

LC колебательные контура применяются практически в любой аппаратуре, работающей на радиочастотах. Как известно из курса физики, колебательный контур состоит из катушки индуктивности и конденсатора (емкости), которые могут быть включены параллельно (параллельный контур) или последовательно (последовательный контур), как на рис.1:

Реактивные сопротивления индуктивности и емкости, как известно, зависят от частоты переменного тока. При увеличении частоты реактивное сопротивление индуктивности растет, а емкости – падает. При уменьшении частоты, наоборот, индуктивное сопротивление падает, а емкостное – растет. Таким образом, для каждого контура есть некоторая частота резонанса, на которой индуктивное и емкостное сопротивления оказываются равными. В момент резонанса резко увеличивается амплитуда переменного напряжения на параллельном контуре или резко увеличивается амплитуда тока на последовательном контуре. На рис.2 показан график зависимости напряжения на параллельном контуре или тока на последовательном контуре от частоты:

На частоте резонанса эти величины имеют максимальное значение. А полоса пропускания контура определяется на уровне 0,7 от максимальной амплитуды, которая есть на частоте резонанса.

Теперь перейдем к практике. Предположим нам нужно сделать параллельный контур, имеющий резонанс на частоте 1 МГц. Прежде всего нужно сделать предварительный расчет такого контура. То есть, определить необходимую емкость конденсатора и индуктивность катушки. Для предварительного расчета есть упрощенная формула:

L=(159,1/F)2/C где: L – индуктивность катушки в мкГн; С – емкость конденсатора в пФ; F – частота в МГц

Зададимся частотой 1 МГц и емкостью, к примеру, 1000 пФ. Получим:

L=(159,1/1)2 /1000 = 25 мкГн

Таким образом, если мы захотим контур на частоту 1 МГц, то нужен конденсатор на 1000 пФ и индуктивность на 25 мкГн. Конденсатор можно подобрать,, а вот индуктивность нужно сделать самостоятельно.

Рассчитать число витков для катушки без сердечника можно по такой формуле:

N=32 *√(L/D) где: N – требуемое число витков; L – заданная индуктивность в мкГн; D – диаметр каркаса в мм, на котором предполагается намотать катушку.

Предположим, диаметр каркаса – 5 мм, тогда:

N=32*√(25/5) = 72 витка.

Данная формула является приближенной, она не учитывает собственную межвитковую емкость катушки. Формула служит для предварительного вычисления параметров катушки, которые затем настраиваются при настройке контура.

В радиолюбительской практике чаще используются катушки с подстроечными сердечниками из феррита, имеющими длину 12-14 мм и диаметр 2,5 – 3 мм. Такие сердечники, например, применяются в контурах телевизоров и приемников. Для предварительного расчета числа витков для такого сердечника есть другая приближенная формула:

N=8,5*√L , подставляем значения для нашего контура N=8,5*√25 = 43 витка. То есть, в таком случае на потребуется намотать на катушку 43 витка провода.

Применение колебательных контуров

Подробный расчет колебательного контура позволяет точно подбирать величину необходимых элементов КК. Это позволяет использовать их в схемах электроники в виде:

  • частотных фильтров – в радиоприёмниках, генераторах сигналов, преобразователях и выпрямителях;
  • колебательных контуров – для выделения и настройки на определённую частоту станции вещания;
  • силовых resonance-фильтров – для формирования напряжения синусоидальной формы.

На самолётах гражданской авиации КК применяется в блоках регулировки частоты генераторов.

Расчёт растягивающих конденсаторов контура настройки.

Как загнать пределы перестройки конденсатора переменной ёмкости (КПЕ) в колеба- тельном LC контуре в нужный диапазон изменения частоты. Онлайн калькулятор ёмкостей конденсаторов растяжки.

«В процессе конструирования генераторов сигналов и задающих генераторов передатчиков радиолюбители часто сталкиваются с трудностями приобретения конденсатора переменной ёмкости с нужными пределами изменения ёмкости. Я предлагаю читателям простой способ расчёта ёмкостей дополнительных конденсаторов С1 и С2 (см. рисунок), включение которых в колебательный контур генератора позволяет получить нужный диапазон перестройки».

Рис.1 Общая схема колебательного контура с растягивающими конденсаторами

Так начинается очень полезная статья, опубликованная в журнале Радио, 1992, №11, с.23, под авторством С. Бирюкова. Далее там приведены уравнения и довольно громоздкие итоговые формулы для расчёта величин растягивающих конденсаторов С1 и С2, а также практический пример расчёта контура с КПЕ. Для желающих освоить теоретическую часть процесса порекомендую обратиться к статье в журнале, а для практиков приведу простую таблицу, позволяющую без излишнего напряга, калькулятора и деревянных счёт в режиме онлайн рассчитать значения искомых конденсаторов. К тому же формулы уважаемого автора не учитывают ёмкости, обозначенной на Рис.1 — Сконт. Тем не менее, эта ёмкость в реальном устройстве всегда присутствует и численно равна сумме: собственной ёмкости катушки индуктивности, общей ёмкости подключённых к ней радиоэлементов, а также ёмкости проводников печатного или какого-либо иного монтажа. И надо сильно постараться, чтобы величина этой суммарной ёмкости уложилась в десяток пикофарад. Даже при довольно продуманном монтаже значение Сконт, как правило, составляет 15…20 пФ. Короче, для максимальной достоверности итогового результата — величину этой ёмкости учитывать необходимо!

КАЛЬКУЛЯТОР РАСЧЁТА РАСТЯГИВАЮЩИХ КОНДЕНСАТОРОВ LC-КОНТУРА.

Необходимо иметь в виду, что выбираемые значения исходных величин должны быть корректными. Например, это относится к частотам диапазона, который не должен быть чрезмерно широк для выбранного КПЕ. Важно следить за тем, чтобы посчитанный номинал ёмкости С1 был больше величины «максимальная ёмкость КПЕ с учётом С1, С2». Если это не так, то надо либо уменьшить индуктивность катушки, либо снизить ширину диапазона перестройки. Возможны иные варианты ограничений, в которых пользователь может разобраться самостоятельно, действуя методом проб и ошибок.

Ну а воспользовавшись простыми, как ситцевые трусы формулами для расчёта последовательно — параллельного соединения конденсаторов, можно решить обратную задачу и посмотреть, какой будет полоса перестройки контура при впаивании в схему конденсаторов из имеющегося у радиолюбителя ряда.

КАЛЬКУЛЯТОР ЧАСТОТ ПЕРЕСТРОЙКИ LC-КОНТУРА С РАСТЯГИВАЮЩИМИ КОНДЕНСАТОРАМИ.

Данный калькулятор не подвержен влиянию вводимых данных и покажет корректный результат при любых значениях исходных величин.

Амплитуда резонанса

В КК при подаче переменного напряжения от внешнего источника наблюдаются два вида резонанса и резкое увеличение двух видов амплитуды: амплитуды тока и амплитуды напряжения.

Амплитуда тока

Амплитуда тока резко возрастает при резонансе напряжений в последовательном контуре (последовательный резонанс). Источник переменной ЭДС включён в цепь, где нагрузкой служат последовательно включённые элементы L и С.

В этом случае в цепь входят сопротивления: активное r и реактивное x, равное:

x = xL – xC.

Так как для внутренних колебаний xL и xC равны, то для тока, поступающего от генератора, при резонансе (когда частоты совпадают) эти значения тоже одинаковы. Поэтому x = 0. В итоге полное сопротивление цепи будет состоять только из небольшого активного сопротивления. Ток при этом получается максимальным.


Схема (а) и резонансные кривые (б) для резонанса напряжений

Амплитуда напряжения

Резонанс токов (параллельный резонанс) является условием резкого возрастания амплитуды напряжения. Источник ЭДС подключается вне контура и нагружен параллельно соединёнными элементами L и С. В этом случае на эффект резонанса влияет внутреннее сопротивление генератора. Амплитуда напряжения на контуре максимальна при малом отличии напряжения контура от напряжения генератора. Это возможно при малом Ri.

Внимание! Изменение частоты генератора меняет ток, а амплитуда напряжения на контуре не отстаёт по величине от напряжения на генераторе. Если, U = Е — I*Ri, где Е – ЭДС, I – ток, то при малом Ri U = Е.


Схема (а) и резонансные кривые (б) для резонанса токов

Формула для определения расчётной резонансной частоты для разных колебательных систем различается по входящим в неё параметрам. Несмотря на все различия, суть остаётся неизменной: эффект резонанса наступает тогда, когда частота внутренних колебаний системы и внешних воздействий становятся равны друг другу.

Факторы, влияющие на индуктивность катушки

На индуктивность катушки влияют несколько факторов.

  • Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.
  • Длина намотки. Две катушки с одинаковым количеством витков, но разной длиной намотки имеют разную индуктивность. Более длинная катушка имеет меньшую индуктивность. Это связано с тем, что магнитное поле менее компактной катушки более слабое и оно не может хорошо концентрироваться в растянутой катушке.
  • Диаметр катушки. Две плотно намотанные катушки с одинаковым количеством витков и разными диаметрами имеют разную индуктивность. Катушка с бóльшим диаметром имеет бóльшую индуктивность.
  • Сердечник. Для увеличения индуктивности в катушку часто вставляется сердечник из материала с высокой магнитной проницаемостью. Сердечники с более высокой магнитной проницаемостью позволяют получить более высокую индуктивность. Сердечники, изготовленные из магнитной керамики — феррита, часто используются в катушках и трансформаторах различных электронных устройств, так как у них очень низкие потери на вихревые токи.

Упрощенная эквивалентная схема реальной катушки индуктивности: R

w — сопротивление обмотки и ее выводов;
L
— индуктивность идеальной катушки;
R
l — сопротивление вследствие потерь в сердечнике; и
C
w — паразитная емкость катушки и ее выводов.

Видео


Кофе капсульный Nescafe Dolce Gusto Капучино, 3 упаковки по 16 капсул

1305 ₽ Подробнее


Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)

435 ₽ Подробнее

Смартфоны Samsung Galaxy Note 9

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

– Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией . – Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC

можно описать следующим образом:

Если конденсатор ёмкостью C

заряжен до напряжения
U
, потенциальная энергия его заряда составит. Если параллельно заряженному конденсатору подключить катушку индуктивности
L
, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t

1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта
t
1 = . По истечении времени
t
1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны. Накопленная катушкой магнитная энергия в этот момент составит. В идеальном рассмотрении, при полном отсутствии потерь в контуре,
EC
будет равна
EL
. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t

2 =
t
1, он перезарядит конденсатор от нуля до максимального отрицательного значения (
-U
). Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]